4 research outputs found

    Hydrometeor and Latent Heat Nudging for Radar Reflectivity Assimilation: Response to the Model States and Uncertainties

    No full text
    Radar data are essential to convection nowcasting and nudging-based radar data assimilation through diabatic initialization is one of the most effective approaches for forecasting convective systems with numerical weather prediction (NWP) models, used at several advanced global weather centers. It is desired to assess the uncertainty and physical consistency of this assimilation process. This paper investigated impacts of relaxation coefficient, radar data update intervals and continuous assimilation time duration and addressed the key issues and possible solutions of the radar data assimilation based on the WRF hydrometeor and latent heat nudging (HLHN) developed at the National Center for Atmospheric Research (NCAR). It is revealed that excessively large relaxation coefficient forced the model to observations with a tendency greater than the physical terms of the convection, causing the dynamic imbalances and serious convection “ramp-down” right after the free forecast starts. Assimilating high update frequency radar data can make the tendency terms moderate and sustained thereby maintaining the assimilation effect and reducing fortuitous convection. HLHN requires a minimum continuous assimilation duration to contain the initial forced disturbance of the model. For a summer Meiyu precipitation case studied, the minimum duration is ~1 h. Appropriate selection of the HLHN parameters is able to effectively improve the temperature, humidity, and dynamic fields of the model. In addition, several issues still remain to be solved to further enhance HLHN

    The Effects of Topography and Urban Agglomeration on the Sea Breeze Evolution over the Pearl River Delta Region

    No full text
    Sea breezes are one of the most important weather processes affecting the environmental and climatic features over coastal areas, and the sea breeze from the Pearl River Estuary (PRE) has significant effects on the Pearl River Delta (PRD) region. We simulated a typical sea breeze process that occurred on 27 December 2020 in the PRD region using the Weather Research and Forecasting (WRF) model to quantify the effects of topography and city clusters on the development of the sea breeze circulation. The results show that: (1) the topography on the west coast of the PRD tends to block the intrusion of the sea breeze and detour it along the eastern part of the terrain in the southeast of Jiangmen. The depth of sea breeze along the position of the detour is increased by 120 m, the penetration distance is increased by 40 km, the maximum intensity of sea breeze decreases by ~0.4 m/s, and the time of maximum speed delays for 4 h. However, on the east coast, the topography promotes the sea breeze, resulting in an occurrence about 4 h earlier due to the heating effects. The depth and the speed of the sea breeze are increased by 466 m and 1.2 m/s, respectively. (2) Under the influence of Urban Heat Island Circulation (UHIC), the sea breezes reach cities near the coast an hour earlier and are later inhibited from propagating further inland. Moreover, a wind convergence zone with a speed of 3–5 m/s and a width of about 25 km is formed along the boundary of suburbs and cities in the PRD region. As a result, two important convergence areas: Foshan–Guangzhou, and Dongguan–Shenzhen are formed. (3) Overall, the topography has a more remarkable impact on the mesoscale wind field especially in the mountain and bay areas, resulting in an average speed disturbance of 2.8 m/s. The urban heat island effect is relatively small and on average it causes only ± 0.9–1.8 m/s wind speed perturbations in the periphery of two convergence areas and over PRE

    The Cross-Border Transport of PM<sub>2.5</sub> from the Southeast Asian Biomass Burning Emissions and Its Impact on Air Pollution in Yunnan Plateau, Southwest China

    No full text
    Southeast Asia is one of the largest biomass burning (BB) regions in the world, and the air pollutants generated by this BB have an important impact on air pollution in southern China. However, the mechanism of the cross-border transport of BB pollutants to neighboring regions is yet to be understood. Based on the MODIS remote sensing products and conventional observation data of meteorology and the environment, the WRF-Chem and FLEXPART-WRF models were used to simulate a typical PM2.5 pollution episode that occurred during 24–26 March 2017 to analyze the mechanism of cross-border transport of BB pollutants over Yunnan Plateau (YP) in southwest China. During this air pollution episode, in conjunction with the flourishing BB activities over the neighboring Indo-China Peninsula (ICP) regions in Southeast Asia, and driven by the southwesterly winds prevailing from the ICP to YP, the cross-border transport of pollutants was observed along the transport pathway with the lifting plateau topography in YP. Based on the proximity to the BB sources in ICP, YP was divided into a source region (SR) and a receptor region (RR) for the cross-border transport, and the negative and positive correlation coefficients (R) between PM2.5 concentrations and wind speeds, respectively, were presented, indicating the different impacts of BB emissions on the two regions. XSBN and Kunming, the representative SR and RR sites in the border and hinterland of YP, respectively, have distinct mechanisms that enhance PM2.5 concentrations of air pollution. The SR site is mainly affected by the ICP BB emissions with local accumulation in the stagnant meteorological conditions, whereas the RR site is dominated by the regional transport of PM2.5 with strong winds and vertical mixing. It was revealed that the large PM2.5 contributions of ICP BB emissions lift from the lower altitudes in SR to the higher altitudes in RR for the regional transport of PM2.5. Moreover, the contributions of regional transport of PM2.5 decrease with the increase in transport distance, reflecting an important role of transport distance between the source–receptor areas in air pollution change
    corecore