37 research outputs found

    Mean-square convergence and stability of the backward Euler method for stochastic differential delay equations with highly nonlinear growing coefficients

    Full text link
    Over the last few decades, the numerical methods for stochastic differential delay equations (SDDEs) have been investigated and developed by many scholars. Nevertheless, there is still little work to be completed. By virtue of the novel technique, this paper focuses on the mean-square convergence and stability of the backward Euler method (BEM) for SDDEs whose drift and diffusion coefficients can both grow polynomially. The upper mean-square error bounds of BEM are obtained. Then the convergence rate, which is one-half, is revealed without using the moment boundedness of numerical solutions. Furthermore, under fairly general conditions, the novel technique is applied to prove that the BEM can inherit the exponential mean-square stability with a simple proof. At last, two numerical experiments are implemented to illustrate the reliability of the theories

    Resveratrol Pretreatment Improved Heart Recovery Ability of Hyperglycemic Bone Marrow Stem Cells Transplantation in Diabetic Myocardial Infarction by Down-Regulating MicroRNA-34a

    Get PDF
    AIM: To examine the effect of resveratrol (RSV) on bone marrow mesenchymal stem cells (BMSCs) under hyperglycemic conditions and on BMSCs transplantation in diabetic rats with myocardial infarction (MI).METHODS:In vitro, BMSCs were isolated from 3-week-old male Sprague Dawley (SD) rats and cultured under hyperglycemic conditions for up to 28 days. Cell viability was analyzed by cell counting kit-8 (CCK-8) assays. The expression of miR-34a was measured by RT-qPCR. Western blotting was used to examine the protein expression of SIRT1, P21, P16, VEGF and HIF-1α. A senescence-associated β-galactosidase assay was used to examine the senescence level of each group. In vivo, a diabetes model was established by feeding rats a high-sugar and high-fat diet for 8 weeks, injecting the animals with streptozotocin (STZ) and continuing high-sugar and high-fat feeding for 4 additional weeks. Then, left anterior descending coronary artery (LAD) cessation was used to established the myocardial infarction (MI) models. Each group of rats was transplanted with differentially preconditioned BMSCs after myocardial infarction. Ultrasound was used to analyze cardiac function 1 and 3 weeks after the operation, and frozen heart sections were used for immunohistochemical analysis, Masson staining and CD31 measurement. In addition, ELISA analysis of serum cytokine levels was performed.RESULTS: This study showed that the viability of BMSCs cultured under hyperglycemic conditions was decreased, the cells became senescent. Besides, an obviously increased in the expression of miR-34a was detected. Moreover, RSV preconditioning reduced the expression of miR-34a in BMSCs after high glucose stimulation and rejuvenated BMSCs under hyperglycemic conditions. Further analysis showed that the transplantation of RSV-BMSCs were benefit to heart recovery following infarction in diabetic rats, promoted proangiogenic factor release and increased arteriole and capillary densities.CONCLUSION: RSV rejuvenated BMSCs after chronic hyperglycemia-induced senescence by interacting with miR-34a and optimized the therapeutic effect of BMSCs on diabetes with myocardial infarction

    Resolving Fine-Scale Surface Features on Polar Sea Ice: A First Assessment of UAS Photogrammetry Without Ground Control

    Get PDF
    Mapping landfast sea ice at a fine spatial scale is not only meaningful for geophysical study, but is also of benefit for providing information about human activities upon it. The combination of unmanned aerial systems (UAS) with structure from motion (SfM) methods have already revolutionized the current close-range Earth observation paradigm. To test their feasibility in characterizing the properties and dynamics of fast ice, three flights were carried out in the 2016–2017 austral summer during the 33rd Chinese National Antarctic Expedition (CHINARE), focusing on the area of the Prydz Bay in East Antarctica. Three-dimensional models and orthomosaics from three sorties were constructed from a total of 205 photos using Agisoft PhotoScan software. Logistical challenges presented by the terrain precluded the deployment of a dedicated ground control network; however, it was still possible to indirectly assess the performance of the photogrammetric products through an analysis of the statistics of the matching network, bundle adjustment, and Monte-Carlo simulation. Our results show that the matching networks are quite strong, given a sufficient number of feature points (mostly > 20,000) or valid matches (mostly > 1000). The largest contribution to the total error using our direct georeferencing approach is attributed to inaccuracies in the onboard position and orientation system (POS) records, especially in the vehicle height and yaw angle. On one hand, the 3D precision map reveals that planimetric precision is usually about one-third of the vertical estimate (typically 20 cm in the network centre). On the other hand, shape-only errors account for less than 5% for the X and Y dimensions and 20% for the Z dimension. To further illustrate the UAS’s capability, six representative surface features are selected and interpreted by sea ice experts. Finally, we offer pragmatic suggestions and guidelines for planning future UAS-SfM surveys without the use of ground control. The work represents a pioneering attempt to comprehensively assess UAS-SfM survey capability in fast ice environments, and could serve as a reference for future improvements

    Prevalence of A2143G mutation of H. pylori-23S rRNA in Chinese subjects with and without clarithromycin use history

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A2143G mutation of <it>23S rRNA </it>gene of <it>H. pylori </it>results in clarithromycin (CLR) resistance. To investigate the prevalence of the CLR resistance-related A2143G mutation of the <it>H. pylori</it>-specific <it>23S rRNA </it>gene in Chinese subjects with and without CLR use history, 307 subjects received the treatment with amoxicillin and omeprazole (OA) and 310 subjects received a placebo in 1995, and 153 subjects received a triple therapy with OA and CLR (OAC) in 2000. DNA was extracted from fasting gastric juice at the end of the intervention trial in 2003. <it>H. pylori </it>infection was determined by <it>H. pylori</it>-specific <it>23S rRNA </it>PCR, ELISA, and<sup>13</sup>C-urea breath test assays. Mutations of the <it>23S rRNA </it>gene were detected by RFLP assays.</p> <p>Results</p> <p>The presence of <it>23S rRNA </it>due to <it>H. pylori </it>infection in the OA group remained lower than that in the placebo group 7.3 yrs after OA-therapy [51.1% (157/307) vs. 83.9% (260/310), p = 0.0000]. In the OAC group, the <it>23S rRNA </it>detection rate was 26.8% (41/153) three yrs after OAC-treatment. The A2143G mutation rate among the <it>23S rRNA</it>-positive subjects in the OAC group [31.7% (13/41)] was significantly higher than that in the OA group [10.2% (16/157)] and the placebo group [13.8% (36/260)]. The frequency of the AAGGG → CTTCA (2222–2226) and AACC → GAAG (2081–2084) sequence alterations in the OAC group was also significantly higher than those in the OA group and the placebo group.</p> <p>Conclusion</p> <p>Primary prevalence of the A2143G mutation was 10~14% among Chinese population without history of CLR therapy. Administration of CLR to eliminate <it>H. pylori </it>infection increased the prevalence of the A2143G mutation in Chinese subjects (32%) significantly.</p

    The first comprehensive study of a giant nebula around a radio-quiet quasar in the z<1z < 1 Universe

    Full text link
    We present the first comprehensive study of a giant,  ⁣ ⁣70\approx \! \! 70 kpc-scale nebula around a radio-quiet quasar at z<1z<1. The analysis is based on deep integral field spectroscopy with MUSE of the field of HE\,0238-1904, a luminous quasar at z=0.6282z=0.6282. The nebula emits strongly in [OII]\mathrm{[O \, II]}, Hβ\rm H \beta, and [OIII]\mathrm{[O \, III]}, and the quasar resides in an unusually overdense environment for a radio-quiet system. The environment likely consists of two groups which may be merging, and in total have an estimated dynamical mass of Mdyn4×1013M_{\rm dyn}\approx 4\times 10^{13} to $10^{14}\ {\rm M_\odot}.Thenebulaexhibitslargelyquiescentkinematicsandirregularmorphology.Thenebulamayariseprimarilythroughinteractionrelatedstrippingofcircumgalacticandinterstellarmedium(CGM/ISM)ofgroupmembers,withsomepotentialcontributionsfromquasaroutflows.Thesimultaneouspresenceofthegiantnebulaandaradioquietquasarinarichenvironmentsuggestsacorrelationbetweensuchcircumquasarnebulaeandenvironmentaleffects.Thispossibilitycanbetestedwithlargersamples.Theupperlimitsontheelectronnumberdensityimpliedbythe. The nebula exhibits largely quiescent kinematics and irregular morphology. The nebula may arise primarily through interaction-related stripping of circumgalactic and interstellar medium (CGM/ISM) of group members, with some potential contributions from quasar outflows. The simultaneous presence of the giant nebula and a radio-quiet quasar in a rich environment suggests a correlation between such circum-quasar nebulae and environmental effects. This possibility can be tested with larger samples. The upper limits on the electron number density implied by the \mathrm{[O \, II]}doubletratiorangefrom doublet ratio range from \log(n_{\rm e, \, [O \, II]} / \mathrm{cm^{-3}}) < 1.2to to 2.8.However,assumingaconstantquasarluminosityandnegligibleprojectioneffects,thedensitiesimpliedfromthemeasuredlineratiosbetweendifferentions(e.g.,. However, assuming a constant quasar luminosity and negligible projection effects, the densities implied from the measured line ratios between different ions (e.g., \mathrm{[O\,II]},, \mathrm{[O\,III]},and, and \mathrm{[Ne\,V]})andphotoionizationsimulationsareoften) and photoionization simulations are often 10{-}400timeslarger.Thislargediscrepancycanbeexplainedbyquasarvariabilityonatimescaleof times larger. This large discrepancy can be explained by quasar variability on a timescale of \approx 10^4{-}10^5$ years.Comment: 19 pages, 9 figures, 3 tables; Submitted to MNRA

    Characteristics of a Fluidic Oscillator with Low Frequency and Low Speed and Its Application to Stall Margin Improvement

    No full text
    Active flow control methods are commonly used in expanding the operating range of compressors. Indeed, unsteady active control methods are the main focus of researchers due to their effectiveness. For constructing an unsteady active control system, reliable actuators are significant. To compare with conventional actuators such as synthetic jet actuators and rotating valves, fluidic oscillators have structurally robust characteristics and can generate self-excited and self-sustained oscillating jets, which leads to its higher applicability in compressors under severe working conditions. Thus, to explore the feasibility of unsteady active control systems by the usage of fluidic oscillators, a low-frequency and low-speed oscillator is first designed and experimentally studied for improving the stability of a low-speed axial flow compressor. During the experiments, a special casing is designed to install 15 uniformly distributed oscillators in the tip region of compressor. Based on the unsteady micro injections of the rotor tip with rotor rotation frequency, the results indicate that the frequency/period of oscillators are flexible, in which the values are decoupled with the variation of inlet pressure. When the inlet-to-outlet pressure ratio of the oscillator is in the range of 1.1~2.0, the maximum velocity ranges from 30 m/s to 80 m/s. Moreover, the mass flow rate of the single oscillator only varies from 0.017‰ to 0.059‰ from the designed compressor mass flow rate. For the improvement of the compressor stall margin, the value is 3.45% when the total mass flow of oscillators is 0.08% of the designed compressor mass flow

    Characteristics of a Fluidic Oscillator with Low Frequency and Low Speed and Its Application to Stall Margin Improvement

    No full text
    Active flow control methods are commonly used in expanding the operating range of compressors. Indeed, unsteady active control methods are the main focus of researchers due to their effectiveness. For constructing an unsteady active control system, reliable actuators are significant. To compare with conventional actuators such as synthetic jet actuators and rotating valves, fluidic oscillators have structurally robust characteristics and can generate self-excited and self-sustained oscillating jets, which leads to its higher applicability in compressors under severe working conditions. Thus, to explore the feasibility of unsteady active control systems by the usage of fluidic oscillators, a low-frequency and low-speed oscillator is first designed and experimentally studied for improving the stability of a low-speed axial flow compressor. During the experiments, a special casing is designed to install 15 uniformly distributed oscillators in the tip region of compressor. Based on the unsteady micro injections of the rotor tip with rotor rotation frequency, the results indicate that the frequency/period of oscillators are flexible, in which the values are decoupled with the variation of inlet pressure. When the inlet-to-outlet pressure ratio of the oscillator is in the range of 1.1~2.0, the maximum velocity ranges from 30 m/s to 80 m/s. Moreover, the mass flow rate of the single oscillator only varies from 0.017&permil; to 0.059&permil; from the designed compressor mass flow rate. For the improvement of the compressor stall margin, the value is 3.45% when the total mass flow of oscillators is 0.08% of the designed compressor mass flow

    Factors involved in cancer metastasis: a better understanding to “seed and soil” hypothesis

    No full text
    Abstract Metastasis has intrigued researchers for more than 100 years. Despite the development of technologies and therapeutic strategies, metastasis is still the major cause of cancer-related death until today. The famous “seed and soil” hypothesis is widely cited and accepted, and it still provides significant instructions in cancer research until today. To our knowledge, there are few reviews that comprehensively and correlatively focus on both the seed and soil factors involved in cancer metastasis; moreover, despite the fact that increasingly underlying mechanisms and concepts have been defined recently, previous perspectives are appealing but may be limited. Hence, we reviewed factors involved in cancer metastasis, including both seed and soil factors. By integrating new concepts with the classic hypothesis, we aim to provide a comprehensive understanding of the “seed and soil” hypothesis and to conceptualize the framework for understanding factors involved in cancer metastasis. Based on a dynamic overview of this field, we also discuss potential implications for future research and clinical therapeutic strategies

    Exosomal microRNA remodels the tumor microenvironment

    No full text
    Tumor occurrence, progression and metastasis depend on the crosstalk between tumor cells and stromal cells and on extrinsic factors outside the tumor microenvironment. Exosomal microRNA (miRNA) not only is involved in communications within the tumor microenvironment but also mediates communications between the extrinsic environment and tumor microenvironment. However, most reviews have been limited to the role of endogenous exosomal miRNA in remodeling the tumor microenvironment. Hence, we herein review the role of endogenous exosomal miRNA in mediating intercellular crosstalk within the tumor microenvironment, inducing the formation of the premetastatic niche. To place our vision outside the microenvironment, we also summarize for the first time the most recent studies regarding how exogenous miRNA derived from milk, plants and microbes influences the tumor microenvironment. Furthermore, to improve the value of exosomal miRNA in cancer research and clinical applications, we also provide some novel ideas for future research based on the comprehensive role of exosomal miRNA in remodeling the tumor microenvironment
    corecore