2 research outputs found

    Effects of Badminton Expertise on Representational Momentum: A Combination of Cross-Sectional and Longitudinal Studies

    Get PDF
    Representational momentum (RM) has been found to be magnified in experts (e.g., sport players) with respect to both real and implied motion in expert-familiar domains. However, it remains unclear whether similar effects can be achieved in expert-unfamiliar domains, especially within the context of implied motion. To answer this question, we conducted two independent experiments using an implied motion paradigm and examined the expert effects of badminton training on RM in both adult and child players. In Experiment 1, we used a cross-sectional design and compared RM between adult professional badminton players and matched controls. The results revealed significantly enhanced RM for adult players, supporting the expert effect in expert-unfamiliar domains for implied motion. However, cross-sectional studies could not ascertain whether the observed expert effect was due to innate factors or expertise acquirement. Therefore, in Experiment 2, we used a longitudinal design and compared RM between two groups of child participants, naming child players who had enrolled professional badminton training program at a sports school and age-matched peer non-players who attended an ordinary primary school without sports training. Before training, there were no differences in RM among child players, their non-player peers, and adult non-players. However, after 4 years of badminton training, child players demonstrated significantly enhanced RM compared to themselves prior to training. The increased RM observed in both adult and child players suggests that badminton expertise modulates implied motion RM

    The role of medial frontal gyrus in action anticipation in professional badminton players

    Get PDF
    Some studies show that the medial frontal cortex is associated with more skilled action anticipation, while similar findings are not observed in some other studies, possibly due to the stimuli employed and the participants used as the control group. In addition, no studies have investigated whether there is any functional connectivity between the medial frontal cortex and other brain regions in more skilled action anticipation. Therefore, the present study aimed to re-investigate how the medial frontal cortex is involved in more skilled action anticipation by circumventing the limitations of previous research and to investigate that the medial frontal cortex functionally connected with other brain regions involved in action processing in more skilled action anticipation. To this end, professional badminton players and novices were asked to anticipate the landing position of the shuttlecock while watching badminton match videos or to judge the gender of the players in the matches. The video clips ended right at the point that the shuttlecock and the racket came into contact to reduce the effect of information about the trajectory of the shuttlecock. Novices who lacked training and watching experience were recruited for the control group to reduce the effect of sport-related experience on the medial frontal cortex. Blood oxygenation level-dependent (BOLD) activation was assessed by means of functional magnetic resonance imaging (fMRI). Compared to novices, badminton players exhibited stronger activation in the left medial frontal cortex during action anticipation and greater functional connectivity between left medial frontal cortex and some other brain regions (e.g., right posterior cingulate cortex). Therefore, the present study supports the position that the medial frontal cortex plays a role in more skilled action anticipation and that there is a specific brain network for more skilled action anticipation that involves right posterior cingulate cortex, right fusiform gyrus, right inferior parietal lobule, left insula and particularly, and left medial frontal cortex
    corecore