7,575 research outputs found
Modeling and removal of optical ghosts in the PROBA-3/ASPIICS externally occulted solar coronagraph
Context: ASPIICS is a novel externally occulted solar coronagraph, which will
be launched onboard the PROBA-3 mission of the European Space Agency. The
external occulter will be placed on the first satellite approximately 150 m
ahead of the second satellite that will carry an optical instrument. During 6
hours per orbit, the satellites will fly in a precise formation, constituting a
giant externally occulted coronagraph. Large distance between the external
occulter and the primary objective will allow observations of the white-light
solar corona starting from extremely low heights 1.1RSun. Aims: To analyze
influence of optical ghost images formed inside the telescope and develop an
algorithm for their removal. Methods: We implement the optical layout of
ASPIICS in Zemax and study the ghost behaviour in sequential and non-sequential
regimes. We identify sources of the ghost contributions and analyze their
geometrical behaviour. Finally we develop a mathematical model and software to
calculate ghost images for any given input image. Results: We show that ghost
light can be important in the outer part of the field of view, where the
coronal signal is weak, since the energy of bright inner corona is
redistributed to the outer corona. However the model allows to remove the ghost
contribution. Due to a large distance between the external occulter and the
primary objective, the primary objective does not produce a significant ghost.
The use of the Lyot spot in ASPIICS is not necessary.Comment: 14 pages, 13 figure
Analysis of method of polarization surveying of water surface oil pollution
A method of polarization surveying of oil films on the water surface is analyzed. Model calculations of contrasted oil and water obtained with different orientations of the analyzer are discussed. The model depends on the spectral range, water transparency and oil film, and the selection of observational direction
Observation of the fine structure for rovibronic spectral lines in visible part of emission spectra of
For the first time in visible part of the emission spectrum the pseudo
doublets representing partly resolved fine structure of rovibronic lines have
been observed. They are characterized by splitting values about 0.2 cm
and relative intensity of the doublet components close to 2.0. It is shown that
they are determined by triplet splitting in lower rovibronic levels of various
electronic transitions. It is proposed to use
an existence of such partly resolved fine structure patterns for identification
of numerous unassigned spectral lines of the molecule coming from great
variety of triplet "gerade" electronic states to vibro-rotational levels of the
state.Comment: 6 pages, including 2 figures and 1 table; submitted to Phys.Rev.Let
Three-dimensional light bullets in a Bragg medium with carbon nanotubes
We present a theoretical study of the propagation of three-dimensional
extremely short electromagnetic pulses (a.k.a. light bullets) through a Bragg
medium containing an immersed array of carbon nanotubes. We demonstrate the
possible stable propagation of such light bullets. In particular, our results
suggest these light bullets can carry information about the Bragg medium
itself.Comment: To appear in Appl. Phys.
Two-proton radioactivity and three-body decay. III. Integral formulae for decay widths in a simplified semianalytical approach
Three-body decays of resonant states are studied using integral formulae for
decay widths. Theoretical approach with a simplified Hamiltonian allows
semianalytical treatment of the problem. The model is applied to decays of the
first excited state of Ne and the ground state of
Fe. The convergence of three-body hyperspherical model calculations to
the exact result for widths and energy distributions are studied. The
theoretical results for Ne and Fe decays are updated and
uncertainties of the derived values are discussed in detail. Correlations for
the decay of Ne state are also studied.Comment: 19 pages, 20 figure
From Coulomb excitation cross sections to non-resonant astrophysical rates in three-body systems: Ne case
Coulomb and nuclear dissociation of Ne on light and heavy targets are
studied theoretically. The dipole E1 strength function is determined in a broad
energy range including energies of astrophysical interest. Dependence of the
strength function on different parameters of the Ne ground state
structure and continuum dynamics is analyzed in a three-body model. The
discovered dependence plays an important role for studies of the strength
functions for the three-body E1 dissociation and radiative capture. The
constraints on the configuration mixing in Ne and on
-wave interaction in the O+ channel are imposed based on
experimental data for Ne Coulomb dissociation on heavy target.Comment: 12 pages, 13 figure
- …