13,269 research outputs found

    Low-momentum Pion Enhancement Induced by Chiral Symmetry Restoration

    Full text link
    The thermal and nonthermal pion production by sigma decay and its relation with chiral symmetry restoration in a hot and dense matter are investigated. The nonthermal decay into pions of sigma mesons which are popularly produced in chiral symmetric phase leads to a low-momentum pion enhancement as a possible signature of chiral phase transition at finite temperature and density.Comment: 3 pages, 2 figure

    Thermal and Nonthermal Pion Enhancements with Chiral Symmetry Restoration

    Get PDF
    The pion production by sigma decay and its relation with chiral symmetry restoration in a hot and dense matter are investigated in the framework of the Nambu-Jona-Lasinio model. The decay rate for the process sigma -> 2pion to the lowest order in a 1/N_c expansion is calculated as a function of temperature T and chemical potential mu. The thermal and nonthermal enhancements of pions generated by the decay before and after the freeze-out present only in the crossover region of the chiral symmetry transition. The strongest nonthermal enhancement is located in the vicinity of the endpoint of the first-order transition.Comment: Latex2e, 12 pages, 8 Postscript figures, submitted to Phys. Rev.

    Active optical clock based on four-level quantum system

    Get PDF
    Active optical clock, a new conception of atomic clock, has been proposed recently. In this report, we propose a scheme of active optical clock based on four-level quantum system. The final accuracy and stability of two-level quantum system are limited by second-order Doppler shift of thermal atomic beam. To three-level quantum system, they are mainly limited by light shift of pumping laser field. These limitations can be avoided effectively by applying the scheme proposed here. Rubidium atom four-level quantum system, as a typical example, is discussed in this paper. The population inversion between 6S1/26S_{1/2} and 5P3/25P_{3/2} states can be built up at a time scale of 10610^{-6}s. With the mechanism of active optical clock, in which the cavity mode linewidth is much wider than that of the laser gain profile, it can output a laser with quantum-limited linewidth narrower than 1 Hz in theory. An experimental configuration is designed to realize this active optical clock.Comment: 5 page

    BEC-BCS Crossover in the Nambu--Jona-Lasinio Model of QCD

    Get PDF
    The BEC-BCS crossover in QCD at finite baryon and isospin chemical potentials is investigated in the Nambu--Jona-Lasinio model. The diquark condensation in two color QCD and the pion condensation in real QCD would undergo a BEC-BCS crossover when the corresponding chemical potential increases. We determined the crossover chemical potential as well as the BEC and BCS regions. The crossover is not triggered by increasing the strength of attractive interaction among quarks but driven by changing the charge density. The chiral symmetry restoration at finite temperature and density plays an important role in the BEC-BCS crossover. For real QCD, strong couplings in diquark and vector meson channels can induce a diquark BEC-BCS crossover in color superconductor, and in the BEC region the chromomagnetic instability is fully cured and the ground state is a uniform phase.Comment: 18 pages, 15 figures. V2: typos corrected, references added. V3: typos in Appendix B correcte

    Coherent control of population transfer between vibrational states in an optical lattice via two-path quantum interference

    Full text link
    We demonstrate coherent control of population transfer between vibrational states in an optical lattice by using interference between a one-phonon transition at 2ω2\omega and a two-phonon transition at ω\omega. The ω\omega and 2ω2\omega transitions are driven by phase- and amplitude-modulation of the lattice laser beams, respectively. By varying the relative phase between these two pathways, we control the branching ratio of transitions to the first excited state and to the higher states. Our best result shows an improvement of the branching ratio by a factor of 3.5±\pm0.7. Such quantum control techniques may find broad application in suppressing leakage errors in a variety of quantum information architectures.Comment: 5 pages, 4 figure

    Neutrino Emission From Direct Urca Processes in Pion Condensed Quark Matter

    Full text link
    We study neutrino emission from direct Urca processes in pion condensed quark matter. In compact stars with high baryon density, the emission is dominated by the gapless modes of the pion condensation which leads to an enhanced emissivity. While for massless quarks the enhancement is not remarkable, the emissivity is significantly larger and the cooling of the condensed matter is considerably faster than that in normal quark matter when the mass difference between uu- and dd-quarks is sizable.Comment: 12 pages,6 figures, published versio

    Angiogenesis-dependent and independent phases of intimal hyperplasia.

    Get PDF
    BACKGROUND: Neointimal vascular smooth muscle cell (VSMC) proliferation is a primary cause of occlusive vascular disease, including atherosclerosis, restenosis after percutaneous interventions, and bypass graft stenosis. Angiogenesis is implicated in the progression of early atheromatous lesions in animal models, but its role in neointimal VSMC proliferation is undefined. Because percutaneous coronary interventions result in induction of periadventitial angiogenesis, we analyzed the role of this process in neointima formation. METHODS AND RESULTS: Local injury to the arterial wall in 2 different animal models induced periadventitial angiogenesis and neointima formation. Application of angiogenesis stimulators vascular endothelial growth factor (VEGF-A165) or a proline/arginine-rich peptide (PR39) to the adventitia of the injured artery induced a marked increase in neointimal thickening beyond that seen with injury alone in both in vivo models. Inhibition of either VEGF (with soluble VEGF receptor 1 [sFlt1]) or fibroblast growth factor (FGF) (with a dominant=negative form of FGF receptor 1 [FGF-R1DN]), respectively, signaling reduced adventitial thickening induced by VEGF and PR39 to the level seen with mechanical arterial injury alone. However, neither inhibitor was effective in preventing neointimal thickening after mechanical injury when administered in the absence of angiogenic growth factor. CONCLUSIONS: Our findings indicate that adventitial angiogenesis stimulates intimal thickening but does not initiate it

    Exclusive BPVB \to PV Decays and CP Violation in the General two-Higgs-doublet Model

    Full text link
    We calculate all the branching ratios and direct CP violations of BPVB \to PV decays in a most general two-Higgs-doublet model with spontaneous CP violation. As the model has rich CP-violating sources, it is shown that the new physics effects to direct CP violations and branching ratios in some channels can be significant when adopting the generalized factorization approach to evaluate the hadronic matrix elements, which provides good signals for probing new physics beyond the SM in the future B experiments.Comment: 21 page

    Paramagnetic Meissner Effect and Finite Spin Susceptibility in an Asymmetric Superconductor

    Full text link
    A general analysis of Meissner effect and spin susceptibility of a uniform superconductor in an asymmetric two-component fermion system is presented in nonrelativistic field theory approach. We found that, the pairing mechanism dominates the magnetization property of superconductivity, and the asymmetry enhances the paramagnetism of the system. At the turning point from BCS to breached pairing superconductivity, the Meissner mass squared and spin susceptibility are divergent at zero temperature. In the breached pairing state induced by chemical potential difference and mass difference between the two kinds of fermions, the system goes from paramagnetism to diamagnetism, when the mass ratio of the two species increases.Comment: 17pages, 2 figures, published in Physical Review
    corecore