8,280 research outputs found

    Distributed quantum sensing enhanced by continuous-variable error correction

    Get PDF
    A distributed sensing protocol uses a network of local sensing nodes to estimate a global feature of the network, such as a weighted average of locally detectable parameters. In the noiseless case, continuous-variable (CV) multipartite entanglement shared by the nodes can improve the precision of parameter estimation relative to the precision attainable by a network without shared entanglement; for an entangled protocol, the root mean square estimation error scales like 1/M with the number M of sensing nodes, the so-called Heisenberg scaling, while for protocols without entanglement, the error scales like 1√M. However, in the presence of loss and other noise sources, although multipartite entanglement still has some advantages for sensing displacements and phases, the scaling of the precision with M is less favorable. In this paper, we show that using CV error correction codes can enhance the robustness of sensing protocols against imperfections and reinstate Heisenberg scaling up to moderate values of M. Furthermore, while previous distributed sensing protocols could measure only a single quadrature, we construct a protocol in which both quadratures can be sensed simultaneously. Our work demonstrates the value of CV error correction codes in realistic sensing scenarios

    Holographic coherent states from random tensor networks

    Full text link
    Random tensor networks provide useful models that incorporate various important features of holographic duality. A tensor network is usually defined for a fixed graph geometry specified by the connection of tensors. In this paper, we generalize the random tensor network approach to allow quantum superposition of different spatial geometries. We set up a framework in which all possible bulk spatial geometries, characterized by weighted adjacent matrices of all possible graphs, are mapped to the boundary Hilbert space and form an overcomplete basis of the boundary. We name such an overcomplete basis as holographic coherent states. A generic boundary state can be expanded on this basis, which describes the state as a superposition of different spatial geometries in the bulk. We discuss how to define distinct classical geometries and small fluctuations around them. We show that small fluctuations around classical geometries define "code subspaces" which are mapped to the boundary Hilbert space isometrically with quantum error correction properties. In addition, we also show that the overlap between different geometries is suppressed exponentially as a function of the geometrical difference between the two geometries. The geometrical difference is measured in an area law fashion, which is a manifestation of the holographic nature of the states considered.Comment: 33 pages, 8 figures. An error corrected on page 14. Reference update

    Research on Rectal Tumor Identification Method by Convolutional Neural Network Based on Multi-Feature Fusion

    Get PDF
    Aiming at the obscure features of tumors in rectal CT images and their complexity, this paper proposes a multi-feature fusion-based convolutional neural network rectal tumor recognition method and uses it to model rectal tumors for classification experiments. This method extracts the convolutional features from rectal CT images using Alexnet, VGG16, ResNet, and DenseNet, respectively. At the same time, local features such as histogram of oriented gradient, local binary pattern, and HU moment invariants are extracted from this image. The above local features are fused linearly with the convolutional features. Then we put the new fused features into the fully connected layer for image classification. The experimental results finally reached the accuracy rates of 92.6 %, 93.1 %, 91.7 %, and 91.1 %, respectively. Comparative experiments show that this method improves the accuracy of rectal tumor recognition

    Implications of new data in charmless B decays

    Get PDF
    Based on the latest experimental data of BππB \to \pi\pi and πK\pi K modes, a model-independent analytical analysis is presented. The CP-averaged branching ratio difference ΔR=RcRn\Delta R = R_c - R_n in BπKB\to \pi K decays with Rc=2Br(π0K)/Br(πKˉ0)R_c = 2Br(\pi^0K^-)/Br(\pi^-\bar{K}^0) and Rn=Br(π+K)/2Br(π0Kˉ0)R_n =Br(\pi^+K^-)/2Br(\pi^0\bar{K}^0) is reduced though it remains larger than the prediction from the standard model(SM) as both measured RnR_n and RcR_c are enhanced, which indicates that a room for new physics becomes smaller. The present data of ππ\pi\pi decay reduce the ratio C/T|C/T| from the previous value of C/T0.8|C/T|\simeq 0.8 to C/T0.65|C/T| \simeq 0.65, which is still larger than the theoretical estimations based on QCD factorization and pQCD. Within SM and flavor SU(3) symmetry, the current πK\pi K data also diminish the ratio C/T|C'/T'| from the previous value C/T2|C'/T'| \simeq 2 to C/T1.16|C'/T'| \simeq 1.16 with a large strong phase δC2.65\delta_{C'} \simeq -2.65, while its value remains much larger than the one extracted from the ππ\pi \pi modes. The direct CP violation ACP(π0Kˉ0)A_{CP}(\pi^0\bar{K}^0) is predicted to be ACP(π0Kˉ0)=0.15±0.03A_{CP}(\pi^0\bar{K}^0) = -0.15\pm0.03, which is consistent with the present data. Two kinds of new effects in both strong and weak phases of the electroweak penguin diagram are considered. It is found that both cases can reduce the ratio to C/T=0.400.80|C'/T'| = 0.40\sim 0.80 and lead to roughly the same predictions for CP violation in π0K0\pi^0 K^0.Comment: 13 pages, 4 figure
    corecore