12,154 research outputs found

    Low-momentum Pion Enhancement Induced by Chiral Symmetry Restoration

    Full text link
    The thermal and nonthermal pion production by sigma decay and its relation with chiral symmetry restoration in a hot and dense matter are investigated. The nonthermal decay into pions of sigma mesons which are popularly produced in chiral symmetric phase leads to a low-momentum pion enhancement as a possible signature of chiral phase transition at finite temperature and density.Comment: 3 pages, 2 figure

    The Effects of Evolutionary Adaptations on Spreading Processes in Complex Networks

    Full text link
    A common theme among the proposed models for network epidemics is the assumption that the propagating object, i.e., a virus or a piece of information, is transferred across the nodes without going through any modification or evolution. However, in real-life spreading processes, pathogens often evolve in response to changing environments and medical interventions and information is often modified by individuals before being forwarded. In this paper, we investigate the evolution of spreading processes on complex networks with the aim of i) revealing the role of evolution on the threshold, probability, and final size of epidemics; and ii) exploring the interplay between the structural properties of the network and the dynamics of evolution. In particular, we develop a mathematical theory that accurately predicts the epidemic threshold and the expected epidemic size as functions of the characteristics of the spreading process, the evolutionary dynamics of the pathogen, and the structure of the underlying contact network. In addition to the mathematical theory, we perform extensive simulations on random and real-world contact networks to verify our theory and reveal the significant shortcomings of the classical mathematical models that do not capture evolution. Our results reveal that the classical, single-type bond-percolation models may accurately predict the threshold and final size of epidemics, but their predictions on the probability of emergence are inaccurate on both random and real-world networks. This inaccuracy sheds the light on a fundamental disconnect between the classical bond-percolation models and real-life spreading processes that entail evolution. Finally, we consider the case when co-infection is possible and show that co-infection could lead the order of phase transition to change from second-order to first-order.Comment: Submitte

    Thermal and Nonthermal Pion Enhancements with Chiral Symmetry Restoration

    Get PDF
    The pion production by sigma decay and its relation with chiral symmetry restoration in a hot and dense matter are investigated in the framework of the Nambu-Jona-Lasinio model. The decay rate for the process sigma -> 2pion to the lowest order in a 1/N_c expansion is calculated as a function of temperature T and chemical potential mu. The thermal and nonthermal enhancements of pions generated by the decay before and after the freeze-out present only in the crossover region of the chiral symmetry transition. The strongest nonthermal enhancement is located in the vicinity of the endpoint of the first-order transition.Comment: Latex2e, 12 pages, 8 Postscript figures, submitted to Phys. Rev.

    Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3_{3}/SrTi0.99_{0.99}Nb0.01_{0.01}O3_{3}

    Full text link
    Transport properties have been studied for a perovskite heterojunction consisting of SrRuO3_{3} (SRO) film epitaxially grown on SrTi0.99_{0.99}Nb0.01_{0.01}O3_{3} (Nb:STO) substrate. The SRO/Nb:STO interface exhibits rectifying current-voltage (II-VV) characteristics agreeing with those of a Schottky junction composed of a deep work-function metal (SRO) and an nn-type semiconductor (Nb:STO). A hysteresis appears in the II-VV characteristics, where high resistance and low resistance states are induced by reverse and forward bias stresses, respectively. The resistance switching is also triggered by applying short voltage pulses of 1 μ\mus - 10 ms duration.Comment: 3 pages, 3 figures, Appl. Phys. Lett., in pres

    Electronic and magnetic states in doped LaCoO_3

    Full text link
    The electronic and magnetic states in doped perovskite cobaltites, (La, Sr)CoO_3, are studied in the numerically exact diagonalization method on Co_2O_{11} clusters. For realistic parameter values, it is shown that a high spin state and an intermediate spin state coexist in one-hole doped clusters due to strong p-d mixing. The magnetic states in the doped cobaltites obtained in the calculation explain various experimental results.Comment: 4 pages, 2 figures, epsfj.st

    Spectral and dynamic characteristics of buried-heterostructure single quantum well (Al,Ga)As lasers

    Get PDF
    We demonstrate that, as predicted, (Al,Ga)As single quantum well (SQW) lasers have substantially narrower spectral linewidths than bulk double-heterostructure lasers. We have observed a further major reduction (>3×) in the linewidth of these SQW lasers when the facet reflectivities are enhanced. This observation is explained theoretically on the basis of the very low losses in coated SQW lasers and the value of the spontaneous emission factor at low threshold currents. We also report on the modulation frequency response parameter of these SQW lasers

    Wireless Sensor Networks for Networked Manufacturing Systems

    Get PDF

    Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention and Dynamic Resampling

    Get PDF
    Automatic segmentation of multi-sequence (multi-modal) cardiac MR (CMR) images plays a significant role in diagnosis and management for a variety of cardiac diseases. However, the performance of relevant algorithms is significantly affected by the proper fusion of the multi-modal information. Furthermore, particular diseases, such as myocardial infarction, display irregular shapes on images and occupy small regions at random locations. These facts make pathology segmentation of multi-modal CMR images a challenging task. In this paper, we present the Max-Fusion U-Net that achieves improved pathology segmentation performance given aligned multi-modal images of LGE, T2-weighted, and bSSFP modalities. Specifically, modality-specific features are extracted by dedicated encoders. Then they are fused with the pixel-wise maximum operator. Together with the corresponding encoding features, these representations are propagated to decoding layers with U-Net skip-connections. Furthermore, a spatial-attention module is applied in the last decoding layer to encourage the network to focus on those small semantically meaningful pathological regions that trigger relatively high responses by the network neurons. We also use a simple image patch extraction strategy to dynamically resample training examples with varying spacial and batch sizes. With limited GPU memory, this strategy reduces the imbalance of classes and forces the model to focus on regions around the interested pathology. It further improves segmentation accuracy and reduces the mis-classification of pathology. We evaluate our methods using the Myocardial pathology segmentation (MyoPS) combining the multi-sequence CMR dataset which involves three modalities. Extensive experiments demonstrate the effectiveness of the proposed model which outperforms the related baselines.Comment: 13 pages, 7 figures, conference pape

    Exclusive B→PVB \to PV Decays and CP Violation in the General two-Higgs-doublet Model

    Full text link
    We calculate all the branching ratios and direct CP violations of B→PVB \to PV decays in a most general two-Higgs-doublet model with spontaneous CP violation. As the model has rich CP-violating sources, it is shown that the new physics effects to direct CP violations and branching ratios in some channels can be significant when adopting the generalized factorization approach to evaluate the hadronic matrix elements, which provides good signals for probing new physics beyond the SM in the future B experiments.Comment: 21 page
    • …
    corecore