13 research outputs found
Age-period-cohort analysis and projection of cancer mortality in Hong Kong, 1998–2030
Objectives To explore the relationship between immigration groups and cancer mortality, this study aimed to explore age, period, birth cohort effects and effects across genders and immigration groups on mortality rates of lung, pancreatic, colon, liver, prostate and stomach cancers and their projections.Design, setting, and participants Death registry data in Hong Kong between 1998 and 2021, which were stratified by age, sex and immigration status. Immigration status was classified into three groups: locals born in Hong Kong, long-stay immigrants and short-stay immigrants.Methods Age-period-cohort (APC) analysis was used to examine age, period, and birth cohort effects for genders and immigration groups from 1998 to 2021. Bayesian APC models were applied to predict the mortality rates from 2022 to 2030.Results Short-stay immigrants revealed pronounced fluctuations of mortality rates by age and of relative risks by cohort and period effects for six types of cancers than those of long-stay immigrants and locals. Immigrants for each type of cancer and gender will be at a higher mortality risk than locals. After 2021, decreasing trends (p<0.05) or plateau (p>0.05) of forecasting mortality rates of cancers occur for all immigration groups, except for increasing trends for short-stay male immigrants with colon cancer (p<0.05, Avg+0.30 deaths/100 000 per annum from 15.47 to 18.50 deaths/100 000) and long-stay male immigrants with pancreatic cancer (p<0.05, Avg+0.72 deaths/100 000 per annum from 16.30 to 23.49 deaths/100 000).Conclusions Findings underscore the effect of gender and immigration status in Hong Kong on mortality risks of cancers that immigrants for each type of cancer and gender will be at a higher mortality risk than locals
Low dispersion in the infectiousness of COVID-19 cases implies difficulty in control
Abstract
The individual infectiousness of coronavirus disease 2019 (COVID-19), quantified by the number of secondary cases of a typical index case, is conventionally modelled by a negative-binomial (NB) distribution. Based on patient data of 9120 confirmed cases in China, we calculated the variation of the individual infectiousness, i.e., the dispersion parameter k of the NB distribution, at 0.70 (95% confidence interval: 0.59, 0.98). This suggests that the dispersion in the individual infectiousness is probably low, thus COVID-19 infection is relatively easy to sustain in the population and more challenging to control. Instead of focusing on the much fewer super spreading events, we also need to focus on almost every case to effectively reduce transmission.http://deepblue.lib.umich.edu/bitstream/2027.42/173487/1/12889_2020_Article_9624.pd
EMuS Muon Facility and Its Application in the Study of Magnetism
A muon facility—EMuS (Experimental Muon Source)—at China Spallation Neutron Source (CSNS) has been studied since 2007. CSNS, which is designed to deliver a proton beam power of 100 kW at Phase-I, and will serve multidisciplinary research based on neutron scattering techniques, has just completed construction, and is ready to open to general users from September 2018. As an additional platform to CSNS, EMuS aims to provide different muon beams for multiple applications, among which, magnetism study by μSR techniques is a core part. By using innovative designs, such as a long target in conical shape situating in superconducting capture solenoids and forward collection method, EMuS can provide very intense muon beams with a proton beam of 5 kW and 1.6 GeV, from surface muons, decay muons, and high momentum muons to slow muons. In this article, the design aspects of EMuS, including general design, target station, muon beamlines, and μSR spectrometer, as well as prospects for applications on magnetism studies, will be reviewed
Study of J/ψ and ψ(3686) → Σ(1385)0Σ¯(1385)0 and Ξ0Ξ¯0
We study the decays of J/ψ and ψ(3686) to the final states Σ(1385)0Σ¯(1385)0 and Ξ0Ξ¯0 based on a single baryon tag method using data samples of (1310.6±7.0)×106 J/ψ and (447.9±2.9)×106 ψ(3686) events collected with the BESIII detector at the BEPCII collider. The decays to Σ(1385)0Σ¯(1385)0 are observed for the first time. The measured branching fractions of J/ψ and ψ(3686)→Ξ0Ξ¯0 are in good agreement with, and much more precise, than the previously published results. The angular parameters for these decays are also measured for the first time. The measured angular decay parameter for J/ψ→Σ(1385)0Σ¯(1385)0, α=−0.64±0.03±0.10, is found to be negative, different to the other decay processes in this measurement. In addition, the "12\% rule" and isospin symmetry in the J/ψ and ψ(3686)→ΞΞ¯ and Σ(1385)Σ¯(1385) systems are tested
Measurements of the branching fractions for D+→KS0KS0K+, KS0KS0π+ and D0→KS0KS0, KS0KS0KS0
By analyzing 2.93 fb−1 of data taken at the ψ(3770) resonance peak with the BESIII detector, we measure the branching fractions for the hadronic decays D+ → K0S K0S K +, D+ → K0S K0Sπ+, D0 → K0S K0S and D0 → K0S K0S K0S . They are determined to be B(D+ → K0S K0S K +) = (2.54 ± 0.05stat. ± 0.12sys.) × 10−3, B(D+ → K0S K0Sπ+) = (2.70 ± 0.05stat. ± 0.12sys.) × 10−3, B(D0 → K0S K0S ) = (1.67 ± 0.11stat. ± 0.11sys.) × 10−4 and B(D0 → K0S K0S K0S ) = (7.21 ± 0.33stat. ± 0.44sys.) × 10−4, where the second one is measured for the first time and the others are measured with significantly improved precision over the previous measurements
Measurement of singly Cabibbo-suppressed decays D0 → π0π0π0, π0π0η, π0ηη and ηηη
Using a data sample of e+e− collision data corresponding to an integrated luminosity of 2.93 fb−1 collected with the BESIII detector at a center-of-mass energy of s=3.773GeV, we search for the singly Cabibbo-suppressed decays D0→π0π0π0, π0π0η, π0ηη and ηηη using the double tag method. The absolute branching fractions are measured to be B(D0→π0π0π0)=(2.0±0.4±0.3)×10−4, B(D0→π0π0η)=(3.8±1.1±0.7)×10−4 and B(D0→π0ηη)=(7.3±1.6±1.5)×10−4 with the statistical significances of 4.8σ, 3.8σ and 5.5σ, respectively, where the first uncertainties are statistical and the second ones systematic. No significant signal of D0→ηηη is found, and the upper limit on its decay branching fraction is set to be B(D0→ηηη)<1.3×10−4 at the 90% confidence level
Observation of the helicity-selection-rule suppressed decay of the χ_(c2) charmonium state
The decays of χc2→K+K−π0, KSK±π∓ and π+π−π0 are studied with the ψ(3686) data samples collected with the Beijing Spectrometer (BESIII). For the first time, the branching fractions of χc2→K∗K¯¯¯¯¯, χc2→a±2(1320)π∓/a02(1320)π0 and χc2→ρ(770)±π∓ are measured. Here K∗K¯¯¯¯¯ denotes both K∗±K∓ and K∗0K¯¯¯¯¯0+c.c., and K∗ denotes the resonances K∗(892), K∗2(1430) and K∗3(1780). The observations indicate a strong violation of the helicity selection rule in χc2 decays into vector and pseudoscalar meson pairs. The measured branching fractions of χc2→K∗(892)K¯¯¯¯¯ are more than 10 times larger than the upper limit of χc2→ρ(770)±π∓, which is so far the first direct observation of a significant U-spin symmetry breaking effect in charmonium decays
A new look at the scalar meson f₀(500) via D⁺ → π⁺π^(−)ℓ⁺ν_(ℓ) decays
Using 2.93 fb−1 of e+e− collision data collected with the BESIII detector at the center-of-mass energy of 3.773 GeV, we investigate the semileptonic decays D+→π+π−ℓ+νℓ (ℓ=e and μ). The D+→f0(500)μ+νμ decay is observed for the first time. By analyzing simultaneously the differential decay rates of D+→f0(500)μ+νμ and D+→f0(500)e+νe in different ℓ+νℓ four-momentum transfer intervals, the product of the relevant hadronic form factor ff0+(0) and the magnitude of the c→d Cabibbo-Kobayashi-Maskawa matrix element |Vcd| is determined to be ff0+(0)|Vcd|=0.0787±0.0060stat±0.0033syst for the first time. With the input of |Vcd| from the global fit in the standard model, we determine ff0+(0)=0.350±0.027stat±0.015syst. The absolute branching fractions of D+→f0(500)(π+π−)μ+νμ and D+→ρ0(π+π−)μ+νμ are determined as (0.72±0.13stat±0.10syst)×10−3 and (1.64±0.13stat±0.11syst)×10−3. Combining these results with those of previous BESIII measurements on their semielectronic counterparts from the same data sample, we test lepton flavor universality by measuring the branching fraction ratios BD+→ρ0μ+νμ/BD+→ρ0e+νe=0.88±0.10 and BD+→f0(500)μ+νμ/BD+→f0(500)e+νe = 1.14±0.28, which are compatible with the standard model expectation