62 research outputs found
Gain and threshold current in type II In(As)Sb mid-infrared quantum dot lasers
In this work, we improved the performance of mid-infrared type II InSb/InAs quantum dot (QD) laser diodes by incorporating a lattice-matched p-InAsSbP cladding layer. The resulting devices exhibited emission around 3.1 μm and operated up to 120 K in pulsed mode, which is the highest working temperature for this type of QD laser. The modal gain was estimated to be 2.9 cm−1 per QD layer. A large blue shift (~150 nm) was observed in the spontaneous emission spectrum below threshold due to charging effects. Because of the QD size distribution, only a small fraction of QDs achieve threshold at the same injection level at 4 K. Carrier leakage from the waveguide into the cladding layers was found to be the main reason for the high threshold current at higher temperatures
The structural evolution of InN nanorods to microstructures on Si (111) by molecular beam epitaxy
We report the catalyst free growth of wurtzite InN nanorods (NRs) and microislands on bare Si(111) by plasma-assisted molecular beam epitaxy at various temperatures. The morphological evolution from NRs to three dimensional (3D) islands as a function of growth temperature is investigated. A combination of tapered, non-tapered, and pyramidal InN NRs are observed at 490 °C, whereas the InN evolves to faceted microislands with an increase in growth temperature to 540 °C and further developed to indented and smooth hemispherical structures at extremely high temperatures (630 °C). The evolution from NRs to microislands with increase in growth temperature is attributed to the lowering of the surface free energy of the growing crystals with disproportionate growth velocities along different growth fronts. The preferential adsorption of In atoms on the (0001) c-plane and (10-10) m-plane promotes the growth of NRs at relatively low growth temperature and 3D microislands at higher temperatures. The growth rate imbalance along different planes facilitates the development of facets on 3D microislands. A strong correlation between the morphological and structural properties of the 3D films is established. XRD studies reveal that the NRs and the faceted microislands are crystalline, whereas the hemispherical microislands grown at extremely high growth temperature contain In adlayers. Finally, photoluminescent emissions were observed at ∼0.75 eV from the InN NRs
Phonon bottleneck in GaAs/AlxGa1-xAs quantum dots
We report low-temperature photoluminescence measurements on highly-uniform GaAs/AlxGa1-xAs quantum dots grown by droplet epitaxy. Recombination between confined electrons and holes bound to carbon acceptors in the dots allow us to determine the energies of the confined states in the system, as confirmed by effective mass calculations. The presence of acceptor-bound holes in the quantum dots gives rise to a striking observation of the phonon-bottleneck effect
Hydrogenation of GaSb/GaAs quantum rings
We present the results of photoluminescence measurements on hydrogenated type-II GaSb/GaAs quantum dot/ring (QD/QR) samples at temperatures ranging from 4.2K to 400 K. Hydrogenation is found to suppress optically induced charge depletion (associated with the presence of carbon acceptors in this system). A redshift of the QD\QR emission energy of a few tens of meV is observed at temperatures 300 K, consistent with a reduction in average occupancy by 1 hole. These effects are accompanied by a reduction in PL intensity post-hydrogenation. We conclude that although hydrogenation may have neutralized the carbon acceptors, multiple hole occupancy of type-II GaSb/GaAs QD/QRs is very likely a precondition for intense emission, which would make extending the wavelength significantly beyond 1300 nm at room temperature difficult
Extended wavelength mid-infrared photoluminescence from type-I InAsN and InGaAsN dilute nitride quantum wells grown on InP
Extended wavelength photoluminescence emission within the technologically important 2–5 micrometer spectral range has been demonstrated from InAs1xNx and In1yGayAs1xNx type I quantum wells grown onto InP. Samples containing N 1% and 2% exhibited 4K photoluminescence emission at 2.0 and 2.7 lm, respectively. The emission wavelength was extended out to 2.9 lm (3.3 lm at 300 K) using a metamorphic buffer layer to accommodate the lattice mismatch. The quantum wells were grown by molecular beam epitaxy and found to be of a high structural perfection as evidenced in the high resolution x-ray diffraction measurements. The photoluminescence was more intense from the quantum wells grown on the metamorphic buffer layer and persisted up to room temperature. The mid-infrared emission spectra were analysed, and the observed transitions were found to be in good agreement with the calculated emission energies
Effect of an in-situ thermal annealing on the structural properties of self-assembled GaSb/GaAs quantum dots
In this work, the effect of the application of a thermal annealing on the structural properties of GaSb/GaAs quantum dots (QDs)1 is analyzed by aberration corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)2 and electron energy loss spectroscopy (EELS)3. Our results show that the GaSb/GaAs QDs are more elongated after the annealing, and that the interfaces are less abrupt due to the Sb diffusion. We have also found a strong reduction in the misfit dislocation density with the annealing. The analysis by EELS of a threading dislocation has shown that the dislocation core is rich in Sb. In addition, the region of the GaAs substrate delimited by the threading dislocation is shown to be Sb-rich as well. An enhanced diffusion of Sb due to a mechanism assisted by the dislocation movement is discussed
Atomic-column scanning transmission electron microscopy analysis of misfit dislocations in GaSb/GaAs quantum dots
The structural quality of GaSb/GaAs quantum dots (QDs) has been analyzed at atomic scale by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy. In particular, we have studied the misfit dislocations that appear because of the high lattice mismatch in the heterostructure. Our results have shown the formation of Lomer dislocations at the interface between the GaSb QDs and the GaAs substrate, but also at the interface with the GaAs capping layer, which is not a frequent observation. The analysis of these dislocations point to the existence of chains of dislocation loops around the QDs. The dislocation core of the observed defects has been characterized, showing that they are reconstructed Lomer dislocations, which have less distortion at the dislocation core in comparison to unreconstructed ones. Strain measurements using geometric phase analysis (GPA) show that these dislocations may not fully relax the strain due to the lattice mismatch in the GaSb QDs
InSb-based quantum dot nanostructures for mid-infrared photonic devices
Novel InSb quantum dot (QD) nanostructures grown by molecular beam epitaxy (MBE) are investigated in order to improve the performance of light sources and detectors for the technologically important mid-infrared (2-5 μm) spectral range. Unlike the InAs/GaAs system which has a similar lattice mismatch, the growth of InSb/InAs QDs by MBE is a challenging task due to Sb segregation and surfactant effects. These problems can be overcome by using an Sb-As exchange growth technique to realize uniform, dense arrays (dot density ~1012 cm-2) of extremely small (mean diameter ~2.5 nm) InSb submonolayer QDs in InAs. Light emitting diodes (LEDs) containing ten layers of InSb QDs exhibit bright electroluminescence peaking at 3.8 μm at room temperature. These devices show superior temperature quenching compared with bulk and quantum well (QW) LEDs due to a reduction in Auger recombination. We also report the growth of InSb QDs in InAs/AlAsSb ‘W’ QWs grown on GaSb substrates which are designed to increase the electron-hole (e-h) wavefunction overlap to ~75%. These samples exhibit very good structural quality and photoluminescence peaking near 3.0 μm at low temperatures
Peculiarities of the hydrogenated In(AsN) alloy
The electronic properties of In(AsN) before and after post-growth sample irradiation with increasing doses of atomic hydrogen have been investigated by photoluminescence. The electron density increases in In(AsN) but not in N-free InAs, until a Fermi stabilization energy is established. A hydrogen ε+/− transition level just below the conduction band minimum accounts for the dependence of donor formation on N, in agreement with a recent theoretical report highlighting the peculiarity of InAs among III–V compounds. Raman scattering measurements indicate the formation of N–H complexes that are stable under thermal annealing up to ∼500 K. Finally, hydrogen does not passivate the electronic activity of N, thus leaving the band gap energy of In(AsN) unchanged, once more in stark contrast to what has been reported in other dilute nitride alloys
Impact ionization and large room-temperature magnetoresistance in micron-sized high-mobility InAs channels
We report on hot electron induced impact ionization and large room-temperature magnetoresistance (MR) in micron-sized channels of n-type high-mobility InAs (μ=3.3m2V−1s−1 at T=300K): the MR reaches values of up to 450% in magnetic fields of 1 T and applied voltages of ∼1 V and is weakly dependent on temperature. We present Monte Carlo simulations of the hot electron dynamics to account for the large MR and its dependence on the sample geometry and applied electric and magnetic fields. Our work demonstrates that the impact ionization of electrons at room temperature, under small applied magnetic fields (<1 T) and small voltages (<1 V), can provide an extremely sensitive mechanism for controlling the electrical resistance of high-mobility semiconductors
- …