9,188 research outputs found

    Submilliamp threshold InGaAs-GaAs strained layer quantum-well laser

    Get PDF
    Strained-layer InGaAs-GaAs single-quantum-well buried-heterostructure lasers were fabricated by a hybrid beam epitaxy and liquid-phase epitaxy technique. Very low threshold currents, 2.4 mA for an uncoated laser (L=425 μm) and 0.75 mA for a coated laser (R~0.9, L=198 μm), were obtained. A 3-dB modulation bandwidth of 7.6 GHz was demonstrated at low bias current (14 mA). Procedures for material preparation and device fabrication are introduced

    Parametric study of cavity length and mirror reflectivity in ultralow threshold quantum well InGaAs/AlGaAs lasers

    Get PDF
    Record low CW threshold currents of 16 μA at-room temperature and 21 μA at cryogenic temperature have been demonstrated in buried heterostructure strained layer, single quantum well InGaAs/AlGaAs lasers with a short cavity length and high reflectivity coatings

    Very High Modulation Efficiency of Ultralow Threshold Current Single Quantum Well InGaAs Lasers

    Get PDF
    A record high current modulation efficiency of 5 GHz/[sqrt](mA) has been demonstrated in an ultralow threshold strained layer single quantum well InGaAs laser

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Self-aligned 0.12mm T-gate In.53Ga.47As/In.52Al.48As HEMT Technology Utilising a Non Annealed Ohmic Contact Strategy

    Get PDF
    An InGaAs/InAlAs based HEMT structure, lattice matched to an InP substrate, is presented in which drive current and transconductance has been optimized through a double-delta doping strategy. Together with an increase in channel carrier density, this allows the use of a non-annealed ohmic contact process. HEMT devices with 120 nm standard and self-aligned T-gates were fabricated using the non-annealed ohmic process. At DC, self-aligned and standard devices exhibited transconductances of up to 1480 and 1100 mS/mm respectively, while both demonstrated current densities in the range 800 mA/mm. At RF, a cutoff frequency f/sub T/ of 190 GHz was extracted for the self-aligned device. The DC characteristics of the standard devices were then calibrated and modelled using a compound semiconductor Monte Carlo device simulator. MC simulations provide insight into transport within the channel and illustrate benefits over a single delta doped structure
    • …
    corecore