559,955 research outputs found

    Parton recombination effect in polarized parton distributions

    Full text link
    Parton recombination corrections to the standard spin-dependent Altarelli-Parisi evolution equation are considered in a nonlinear evolution equation. The properties of this recombination equation and its relation with the spin-averaged form are discussed.Comment: 25 pages, 1 figure, to be published in Nucl. Phys. B. Appendix is correcte

    Game Theory Meets Network Security: A Tutorial at ACM CCS

    Full text link
    The increasingly pervasive connectivity of today's information systems brings up new challenges to security. Traditional security has accomplished a long way toward protecting well-defined goals such as confidentiality, integrity, availability, and authenticity. However, with the growing sophistication of the attacks and the complexity of the system, the protection using traditional methods could be cost-prohibitive. A new perspective and a new theoretical foundation are needed to understand security from a strategic and decision-making perspective. Game theory provides a natural framework to capture the adversarial and defensive interactions between an attacker and a defender. It provides a quantitative assessment of security, prediction of security outcomes, and a mechanism design tool that can enable security-by-design and reverse the attacker's advantage. This tutorial provides an overview of diverse methodologies from game theory that includes games of incomplete information, dynamic games, mechanism design theory to offer a modern theoretic underpinning of a science of cybersecurity. The tutorial will also discuss open problems and research challenges that the CCS community can address and contribute with an objective to build a multidisciplinary bridge between cybersecurity, economics, game and decision theory

    Electrochemical growth of three-dimensionally ordered macroporous metals as photonic crystals

    Get PDF
    Over the last two decades three dimensionally ordered macroporous (3-DOM) materials have turned out to be very promising in many applications ranging from optics, plasmonics, to catalyst scaffolds. The thesis presents a systematic study on formation and characterisation of 3-DOM metals as photonic crystals. Metals are nearly perfect reflectors with low adsorption at microwave or millimetre wavelengths. Meanwhile they generally absorb visible light because of their negative imaginary part of the dielectric constant that could destroy the band gap in the visible though they. Howevers, for noble metals such as gold, silver and copper, considering the Drude-like behaviour, the adsorption will be small enough to achieve a complete photonic band gap for optical or even shorter wavelengths, with silver performing the best. In order to fabricate the 3-DOM metallic nanostructures, template-directed electrochemical deposition has been employed in which, initially a highly ordered film of submircon sized colloidal spheres is deposited on to electronically conducting substrates, for instance, indium-tin oxide (ITO) coated glass substrate, through evaporation-induced self-assembly; and subsequently it is infiltrated with metallic elements electrochemically reduced from corresponding electrolytes; fiannly removal of the colloidal templating film reveals a metallic film comprised of periodically arranged spherical voids. Field Emission Gun Scanning Electron Microscopy (FEGSEM) was used to examine the surface morphology and periodicity of the 3-DOM metallic films. It revealed that highly ordered structures are homogenous and uniform over a large scale for both the original colloidal templates and metallic inverse structures. However for silver electroplated from either silver thiosulfate or silver chlorate bath, voids in the template are fully infiltrated, including both the interstitial spaces between the colloidal spheres and any cracks between film domains, forming a complete solid network over large length scales; for copper the filling factors are strongly dependent on the bath chemistry and in copper sulfate bath isolated macroporous domains can be formed due to those in the cracks will be dissolved back to the solution while those reduced from copper glycerol bath resulted in fully infiltrated structures. Moreover, angle-resolved reflectance spectroscopy has further confirmed the three-dimensional periodicity and indicated the inverse structures have stop band properties in the visible wavelength region, consistent with variation in the effective refractive index of the films. In addition, surface enhanced Raman scattering (SERS) spectroscopy has been used to evaluate applications of the inverse metals as SERS-active substrates. SERS has nearly exclusively been associated with three noble metals copper, silver (by far the most important) and gold. The 3-DOM metallic thin films possess excellent features for SERS detection arising from their long range periodical void geometry, which gives significant enhancement to Raman intensity. Preliminary measurements have demonstrated the 3-DOM metallic structures are well suited for SERS enhancement. Series spectra from different points of each specimen have given reproducible intensities. Variables associated with Raman intensity such as pore size, dye concentration, and film thickness, have been tuned to achieve maximal enhancement for visible and near-IR wavelengths

    Singularity in self-energy and composite fermion excitations of interacting electrons

    Full text link
    We propose that a composite fermion operator fiσ(2niσˉ−1)f_{i\sigma}(2n_{i{\bar \sigma}}-1) could have coherent excitations, where fiσf_{i\sigma} is the fermion operator for interacting electrons and niσˉn_{i{\bar \sigma}} is the number operator of the opposite spin. In the two-impurity Anderson model, it is found that the excitation of this composite fermion has a pseudogap in the Kondo regime, and has a finite spectral weight in the regime where the excitation of the regular fermion fiσf_{i\sigma} has a pseudogap. In the latter regime, the self-energy of fiσf_{i\sigma} is found to be singular near Fermi energy. We argue that this composite fermion could develop a Fermi surface with Fermi liquid behaviors but "hidden" from charge excitations in lattice generalizations. We further illustrate that this type of excitations is essential in addressing the pseudogap state and unconventional superconductivity.Comment: 10 pages, 6 figure
    • …
    corecore