38,292 research outputs found

    Inflationary attractors from nonminimal coupling

    Get PDF
    We show explicitly how the E model attractor is obtained from the general scalar-tensor theory of gravity with arbitrary conformal factors in the strong coupling limit. By using conformal transformations, any attractor with the observables nsn_s and rr can be obtained. The existence of attractors imposes a challenge to distinguish different models.Comment: 5 pages, 1 figures, prepared for the proceedings of the International Conference on Gravitation : Joint Conference of ICGAC-XIII and IK1

    Microscopic description of neutron emission rates in compound nuclei

    Full text link
    The neutron emission rates in thermal excited nuclei are conventionally described by statistical models with a phenomenological level density parameter that depends on excitation energies, deformations and mass regions. In the microscopic view of hot nuclei, the neutron emission rates can be determined by the external neutron gas densities without any free parameters. Therefore the microscopic description of thermal neutron emissions is desirable that can impact several understandings such as survival probabilities of superheavy compound nuclei and neutron emissivity in reactors. To describe the neutron emission rates microscopically, the external thermal neutron gases are self-consistently obtained based on the Finite-Temperature Hartree-Fock-Bogoliubov (FT-HFB) approach. The results are compared with the statistical model to explore the connections between the FT-HFB approach and the statistical model. The Skyrme FT-HFB equation is solved by HFB-AX in deformed coordinate spaces. Based on the FT-HFB approach, the thermal properties and external neutron gas are properly described with the self-consistent gas substraction procedure. Then neutron emission rates can be obtained based on the densities of external neutron gases. The thermal statistical properties of 238^{238}U and 258^{258}U are studied in detail in terms of excitation energies. The thermal neutron emission rates in 238,258^{238, 258}U and superheavy compound nuclei 112278_{112}^{278}Cn and 114292_{114}^{292}Fl are calculated, which agree well with the statistical model by adopting an excitation-energy-dependent level density parameter. The coordinate-space FT-HFB approach can provide reliable microscopic descriptions of neutron emission rates in hot nuclei, as well as microscopic constraints on the excitation energy dependence of level density parameters for statistical models.Comment: 6 pages, 5 figures, revised and accepted for PR
    • …
    corecore