73,283 research outputs found

    Accelerating universe from gravitational leakage into extra dimensions: confrontation with SNeIa

    Full text link
    There is mounting observational evidence that the expansion of our universe is undergoing an acceleration. A dark energy component has usually been invoked as the most feasible mechanism for the acceleration. However, it is desirable to explore alternative possibilities motivated by particle physics before adopting such an untested entity. In this work, we focus our attention on an acceleration mechanism: one arising from gravitational leakage into extra dimensions. We confront this scenario with high-zz type Ia supernovae compiled by Tonry et al. (2003) and recent measurements of the X-ray gas mass fractions in clusters of galaxies published by Allen et al. (2002,2003). A combination of the two databases gives at a 99% confidence level that Ωm=0.290.02+0.04\Omega_m=0.29^{+0.04}_{-0.02}, Ωrc=0.210.08+0.08\Omega_{rc}=0.21^{+0.08}_{-0.08}, and Ωk=0.360.35+0.31\Omega_k=-0.36^{+0.31}_{-0.35}, indicating a closed universe. We then constrain the model using the test of the turnaround redshift, zq=0z_{q=0}, at which the universe switches from deceleration to acceleration. We show that, in order to explain that acceleration happened earlier than zq=0=0.6z_{q=0} = 0.6 within the framework of gravitational leakage into extra dimensions, a low matter density, Ωm<0.27\Omega_m < 0.27, or a closed universe is necessary.Comment: 16 pages, 4 figures, accepted for publication in Ap

    Oil Blending: Mixing and Contamination

    Get PDF
    The Shell Company of Australia has a frequent need to blend lubricants. Blending, sometimes involving three lubricant oils and additives, takes place by jet mixing in large tanks of typically 45,000 titres capacity. The jets are driven by pumps with typical volume throughput of up to 1,000 titres per minute, and typical blending times may be as long as one or two hours. The jet blending process was investigated in a number of ways at the Study Group. These included: simple estimates for blending times, theoretical and experimental description of jet behaviour, development of a simple compartment model for the blending process, and several large scale computer simulations of the jet-induced motion using a commercial Computational Fluid Dynamics package. In addition, the sedimentation of contaminant particles in the tanks was investigated. This overall investigation, using a variety of approaches, gave a good knowledge of the blending process

    Gravitational Lensing Statistics as a Probe of Dark Energy

    Get PDF
    By using the comoving distance, we derive an analytic expression for the optical depth of gravitational lensing, which depends on the redshift to the source and the cosmological model characterized by the cosmic mass density parameter Ωm\Omega_m, the dark energy density parameter Ωx\Omega_x and its equation of state ωx=px/ρx\omega_x = p_x/\rho_x. It is shown that, the larger the dark energy density is and the more negative its pressure is, the higher the gravitational lensing probability is. This fact can provide an independent constraint for dark energy.Comment: 9 pages, 2 figure

    Gravitational lensing statistical properties in general FRW cosmologies with dark energy component(s): analytic results

    Get PDF
    Various astronomical observations have been consistently making a strong case for the existence of a component of dark energy with negative pressure in the universe. It is now necessary to take the dark energy component(s) into account in gravitational lensing statistics and other cosmological tests. By using the comoving distance we derive analytic but simple expressions for the optical depth of multiple image, the expected value of image separation and the probability distribution of image separation caused by an assemble of singular isothermal spheres in general FRW cosmological models with dark energy component(s). We also present the kinematical and dynamical properties of these kinds of cosmological models and calculate the age of the universe and the distance measures, which are often used in classical cosmological tests. In some cases we are able to give formulae that are simpler than those found elsewhere in the literature, which could make the cosmological tests for dark energy component(s) more convenient.Comment: 14 pages, no figure, Latex fil

    PDMS/PVA composite ferroelectret for improved energy harvesting performance

    Get PDF
    This paper address the PDMS ferroelectret discharge issue for improved long- term energy harvesting performance. The PDMS/PVA ferroelectret is fabricated using a 3D-printed plastic mould technology and a functional PVA composite layer is introduced. The PDMS/PVA composite ferroelectret achieved 80% piezoelectric coefficient d33 remaining, compared with 40% without the proposed layer over 72 hours. Further, the retained percentage of output voltage is about 73% over 72 hours

    Numerical simulations of negative-index refraction in wedge-shaped metamaterials

    Full text link
    A wedge-shaped structure made of split-ring resonators (SRR) and wires is numerically simulated to evaluate its refraction behavior. Four frequency bands, namely, the stop band, left-handed band, ultralow-index band, and positive-index band, are distinguished according to the refracted field distributions. Negative phase velocity inside the wedge is demonstrated in the left-handed band and the Snell's law is conformed in terms of its refraction behaviors in different frequency bands. Our results confirmed that negative index of refraction indeed exists in such a composite metamaterial and also provided a convincing support to the results of previous Snell's law experiments.Comment: 18 pages, 6 figure
    corecore