53 research outputs found

    Progress in Piezoelectric Nanogenerators Based on PVDF Composite Films

    No full text
    In recent years, great progress has been made in the field of energy harvesting to satisfy increasing needs for portable, sustainable, and renewable energy. Among piezoelectric materials, poly(vinylidene fluoride) (PVDF) and its copolymers are the most promising materials for piezoelectric nanogenerators (PENGs) due to their unique electroactivity, high flexibility, good machinability, and long–term stability. So far, PVDF–based PENGs have made remarkable progress. In this paper, the effects of the existence of various nanofillers, including organic–inorganic lead halide perovskites, inorganic lead halide perovskites, perovskite–type oxides, semiconductor piezoelectric materials, two–dimensional layered materials, and ions, in PVDF and its copolymer structure on their piezoelectric response and energy–harvesting properties are reviewed. This review will enable researchers to understand the piezoelectric mechanisms of the PVDF–based composite–film PENGs, so as to effectively convert environmental mechanical stimulus into electrical energy, and finally realize self–powered sensors or high–performance power sources for electronic devices

    Progress in Piezoelectric Nanogenerators Based on PVDF Composite Films

    No full text
    In recent years, great progress has been made in the field of energy harvesting to satisfy increasing needs for portable, sustainable, and renewable energy. Among piezoelectric materials, poly(vinylidene fluoride) (PVDF) and its copolymers are the most promising materials for piezoelectric nanogenerators (PENGs) due to their unique electroactivity, high flexibility, good machinability, and long–term stability. So far, PVDF–based PENGs have made remarkable progress. In this paper, the effects of the existence of various nanofillers, including organic–inorganic lead halide perovskites, inorganic lead halide perovskites, perovskite–type oxides, semiconductor piezoelectric materials, two–dimensional layered materials, and ions, in PVDF and its copolymer structure on their piezoelectric response and energy–harvesting properties are reviewed. This review will enable researchers to understand the piezoelectric mechanisms of the PVDF–based composite–film PENGs, so as to effectively convert environmental mechanical stimulus into electrical energy, and finally realize self–powered sensors or high–performance power sources for electronic devices

    Polarization-Sensitive Light Sensors Based on a Bulk Perovskite MAPbBr3 Single Crystal

    No full text
    Organic-inorganic halide perovskites have attracted much attention thanks to their excellent optoelectronic performances. Here, a bulk CH3NH3PbBr3 (MAPbBr3) single crystal (SC) was fabricated, whose temperature and light polarization dependence was investigated by measuring photoluminescence. The presence of obvious band tail states was unveiled when the applied temperature was reduced from room temperature to 78 K. Temperature dependence of the bandgap of the MAPbBr3 SC was found to be abnormal compared with those of traditional semiconductors due to the presence of instabilization of out-of-phase tail states. The MAPbBr3 SC revealed an anisotropy light absorption for linearly polarized light with an anisotropy ratio of 1.45, and a circular dichroism ratio of up to 9% was discovered due to the spin-orbit coupling in the band tail states, exhibiting great polarization sensitivity of the MAPbBr3 SC for the application of light sensors. These key findings shed light on the development of potential optoelectronic and spintronic applications based on large-scaled organic-inorganic perovskite SCs

    Converting Spent Cu/Fe Layered Double Hydroxide into Cr(VI) Reductant and Porous Carbon Material

    No full text
    Recycling solid waste as functional materials is important for both environmental remediation and resource recycling. This study attempts to recycle spent Cu/Fe layered double hydroxide (Cu/Fe-LDH) which is generated from the adsorption of dyes by converting to Cr(VI) reductant and porous carbon material. Results showed that the obtained reductant was mainly composed of Fe-0 and Cu-0, and exhibited good reductive activity toward Cr(VI). The species of Fe-0, Fe2+, Cu-0, and Cu+ all favored the reduction of Cr(VI) according to X-ray photoelectron spectroscopy analysis. During Cr(VI) removal, solution pH could increase to neutral which caused the metal ions to precipitate near completion. On the other hand, the spent Cu/Fe-LDH could be employed to produce porous carbon materials, and the generated waste metals solution herein could be reused for LDH synthesis. Specific surface areas of the obtained carbon materials varied from 141.3-744.2 m(2)/g with changes in adsorbed amount of dyes on the LDH. This study illustrates that all the components of wastes can be useful resources, offering a simple recycling approach for similar organic-inorganic solid wastes. This work also enlightens us that designing a proper initial product is crucial to make waste recycling simpler

    Calcined Mg/Al layered double hydroxides as efficient adsorbents for polyhydroxy fullerenes

    No full text
    The environmental behaviors and pollution control of engineered nanomaterials are drawing increasing interests nowadays. This work showed that the calcined layered double hydroxides (LDH), i.e., layered double oxides (LDO), could effectively adsorb polyhydroxy fullerenes (PHF) from aqueous solution. The maximum adsorption capacity of LDO reached similar to 476 mg/g, much higher than that on LDH (similar to 47 mg/g) and activated carbon (similar to 28 mg/g). All of the three equilibrium adsorption isotherms could be well fitted with the Langmuir equation. The high adsorption capacity of PHF on LDO can be attributed to the enhanced accessibility to the adsorption sites for PHF during structural reconstruction of LDO. In addition, the rehydrated LDH, with a net positive surface charge, has high affinity for negatively charged PHF through an electrostatic interaction. Cl-, CO32-, and SO42- could slightly enhance the adsorption of the PHF on LDO, while HPO42- showed an evident inhibiting effect in the whole concentration range of PHF. The adsorbents before and after the adsorption of PHF were characterized by XRD, FT-IR, and TG. The obtained results indicated that the adsorbed PHF could not intercalate into the interlayer spaces of the reconstructed LDH, but could effectively compete with CO32- during the adsorption process
    • …
    corecore