9,450 research outputs found
Dilute magnetic semiconductor and half metal behaviors in 3d transition-metal doped black and blue phosphorenes: a first-principles study
We present first-principles density-functional calculations for the
structural, electronic, and magnetic properties of substitutional 3d transition
metal (TM) impurities in two-dimensional black and blue phosphorenes. We find
that the magnetic properties of such substitutional impurities can be
understood in terms of a simple model based on the Hund's rule. The TM-doped
black phosphorenes with Ti, V, Cr, Mn, Fe and Ni impurities show dilute
magnetic semiconductor (DMS) properties while those with Sc and Co impurities
show nonmagnetic properties. On the other hand, the TM-doped blue phosphorenes
with V, Cr, Mn and Fe impurities show DMS properties, those with Ti and Ni
impurities show half-metal properties, whereas Sc and Co doped systems show
nonmagnetic properties. We identify two different regimes depending on the
occupation of the hybridized electronic states of TM and phosphorous atoms: (i)
bonding states are completely empty or filled for Sc- and Co-doped black and
blue phosphorenes, leading to non-magnetic; (ii) non-bonding d states are
partially occupied for Ti-, V-, Cr-, Mn-, Fe- and Ni-doped black and blue
phosphorenes, giving rise to large and localized spin moments. These results
provide a new route for the potential applications of dilute magnetic
semiconductor and half-metal in spintronic devices by employing black and blue
phosphorenes.Comment: 9 pages, 7 figure
- …