55,961 research outputs found

    Performance Evaluation of Distributed-Antenna Communications Systems Using Beam-Hopping

    No full text
    Digital beamforming (DBF) techniques are capable of improving the performance of communications systems significantly. However, if the transmitted signals are conflicted with strong interference, especially, in the direction of the transmitted beams , these directional jamming signals will severely degrade the system performance. In order to efficiently mitigate the interference of the directional jammers, in this contribution a beam-hopping (BH) communications scheme is proposed. In the proposed BH communications scheme, only one pair of the beams is used for transmission and it hops from one to the next according to an assigned BH pattern. In this contribution a range of expressions in terms of the average SINR performance have been derived, when both the uplink and downlink are considered. The average SINR performance of the proposed BH scheme and that of the conventional single-beam (SB) as well as multiple-beam (MB) assisted beam-processing schemes have been investigated. Our analysis and results show that the proposed BH scheme is capable of efficiently combating the directional jamming, with the aid of utilizing the directional gain of the beams generated by both the transmitter and the receiver. Furthermore, the BH scheme is capable of reducing the intercept probability of the communications. Therefore, the proposed BH scheme is suitable for communications, when several distributed antenna arrays are available around a mobile

    One-Dimensional Transition Metal-Benzene Sandwich Polymers: Possible Ideal Conductors for Spin Transport

    Full text link
    We investigate the electronic and magnetic properties of the proposed one-dimensional transition metal (TM=Sc, Ti, V, Cr, and Mn)-benzene (Bz) sandwich polymers by means of density functional calculations. [V(Bz)]∞_{\infty} is found to be a quasi-half-metallic ferromagnet and half-metallic ferromagnetism is predicted for [Mn(Bz)]∞_{\infty}. Moreover, we show that stretching the [TM(Bz)]∞_{\infty} polymers could have dramatic effects on their electronic and magnetic properties. The elongated [V(Bz)]∞_{\infty} displays half-metallic behavior, and [Mn(Bz)]∞_{\infty} stretched to a certain degree becomes an antiferromagnetic insulator. The possibilities to stabilize the ferromagnetic order in [V(Bz)]∞_{\infty} and [Mn(Bz)]∞_{\infty} polymers at finite temperature are discussed. We suggest that the hexagonal bundles composed by these polymers might display intrachain ferromagnetic order at finite temperature by introducing interchain exchange coupling

    Electronic, Mechanical, and Piezoelectric Properties of ZnO Nanowires

    Full text link
    Hexagonal [0001] nonpassivated ZnO nanowires are studied with density functional calculations. The band gap and Young's modulus in nanowires which are larger than those in bulk ZnO increase along with the decrease of the radius of nanowires. We find ZnO nanowires have larger effective piezoelectric constant than bulk ZnO due to their free boundary. In addition, the effective piezoelectric constant in small ZnO nanowires doesn't depend monotonously on the radius due to two competitive effects: elongation of the nanowires and increase of the ratio of surface atoms

    Linear scaling calculation of band edge states and doped semiconductors

    Full text link
    Linear scaling methods provide total energy, but no energy levels and canonical wavefuctions. From the density matrix computed through the density matrix purification methods, we propose an order-N (O(N)) method for calculating both the energies and wavefuctions of band edge states, which are important for optical properties and chemical reactions. In addition, we also develop an O(N) algorithm to deal with doped semiconductors based on the O(N) method for band edge states calculation. We illustrate the O(N) behavior of the new method by applying it to boron nitride (BN) nanotubes and BN nanotubes with an adsorbed hydrogen atom. The band gap of various BN nanotubes are investigated systematicly and the acceptor levels of BN nanotubes with an isolated adsorbed H atom are computed. Our methods are simple, robust, and especially suited for the application in self-consistent field electronic structure theory

    Coordination motifs and large-scale structural organization in atomic clusters

    Full text link
    The structure of nanoclusters is complex to describe due to their noncrystallinity, even though bonding and packing constraints limit the local atomic arrangements to only a few types. A computational scheme is presented to extract coordination motifs from sample atomic configurations. The method is based on a clustering analysis of multipole moments for atoms in the first coodination shell. Its power to capture large-scale structural properties is demonstrated by scanning through the ground state of the Lennard-Jones and C60_{60} clusters collected at the Cambridge Cluster Database.Comment: 6 pages, 7 figure

    First principles lattice dynamics of NaCoO2_2

    Full text link
    We report first principles linear response calculations on NaCoO2_2. Phonon frequencies and eigenvectors are obtained throughout the Brillouin zone for two geometries with different Na site occupancies. While most of the phonon modes are found to be unsensitive to the Na site occupancy, there are two modes dominated by out-of-plane vibrations of Na giving very different frequencies for different geometries. One of these two modes, the A2u_{2u} mode, is infrared-active, and can be used as a suitable sensor of Na distribution/ordering. The longitudinal-transverse splitting of the zone-center optical-mode frequencies, Born effective charges and the dielectric constants are also reported, showing considerable anisotropy. The calculated frequencies of Raman-active modes generally agree with the experimental values of corresponding Na de-intercalated and/or hydrated compounds, while it requires better experimental data to clarify the infrared-active mode frequencies.Comment: 12 pages, 2 figure
    • …
    corecore