58,096 research outputs found
Topological Bose-Mott Insulators in a One-Dimensional Optical Superlattice
We study topological properties of the Bose-Hubbard model with repulsive
interactions in a one-dimensional optical superlattice. We find that the Mott
insulator states of the single-component (two-component) Bose-Hubbard model
under fractional fillings are topological insulators characterized by a nonzero
charge (or spin) Chern number with nontrivial edge states. For ultracold atomic
experiments, we show that the topological Chern number can be detected through
measuring the density profiles of the bosonic atoms in a harmonic trap.Comment: 5 pages, published versio
Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator
Photo-transmutation of long-lived nuclear waste induced by high-charge
relativistic electron beam (e-beam) from laser plasma accelerator is
demonstrated. Collimated relativistic e-beam with a high charge of
approximately 100 nC is produced from high-intensity laser interaction with
near-critical-density (NCD) plasma. Such e-beam impinges on a high-Z convertor
and then radiates energetic bremsstrahlung photons with flux approaching
10^{11} per laser shot. Taking long-lived radionuclide ^{126}Sn as an example,
the resulting transmutation reaction yield is the order of 10^{9} per laser
shot, which is two orders of magnitude higher than obtained from previous
studies. It is found that at lower densities, tightly focused laser irradiating
relatively longer NCD plasmas can effectively enhance the transmutation
efficiency. Furthermore, the photo-transmutation is generalized by considering
mixed-nuclide waste samples, which suggests that the laser-accelerated
high-charge e-beam could be an efficient tool to transmute long-lived nuclear
waste.Comment: 13 pages, 8 figures, it has been submitted to Physics of Plasm
Synthesis, characterization and crystal structure of a dioxomolybdenum(VI) complex derived from N’-(2-hydroxy-4-diethaylaminobenzylidene)-4-hydroxybenzohydrazide
Reaction of [MoO2(acac)2] (where acac = acetylacetonate) with N’-(2-hydroxy-4-diethaylaminobenzylidene)-4-hydroxybenzohydrazide (H2L) in methanol afforded a methanol-coordinated mononuclear molybdenum(VI) oxo complex, [MoO2L(MeOH)]. Crystal and molecular structure of the complex were determined by single crystal X-ray diffraction method. The complex was further characterized by elemental analysis and FT-IR spectra. Single crystal X-ray structural studies indicate that the hydrazone ligand coordinates to the MoO2 core through enolate oxygen, phenolate oxygen and azomethine nitrogen. The Mo atom in the complex is in octahedral coordination. Thermal stability of the complex has also been studied. KEY WORDS: Molybdenum complex, Hydrazone ligand, Crystal structure, X-ray diffraction, Thermal property Bull. Chem. Soc. Ethiop. 2014, 28(3), 409-414.DOI: http://dx.doi.org/10.4314/bcse.v28i3.1
- …