118,908 research outputs found
Integration of twisted Dirac brackets
The correspondence between Poisson structures and symplectic groupoids,
analogous to the one of Lie algebras and Lie groups, plays an important role in
Poisson geometry; it offers, in particular, a unifying framework for the study
of hamiltonian and Poisson actions. In this paper, we extend this
correspondence to the context of Dirac structures twisted by a closed 3-form.
More generally, given a Lie groupoid over a manifold , we show that
multiplicative 2-forms on relatively closed with respect to a closed 3-form
on correspond to maps from the Lie algebroid of into the
cotangent bundle of , satisfying an algebraic condition and a
differential condition with respect to the -twisted Courant bracket. This
correspondence describes, as a special case, the global objects associated to
twisted Dirac structures. As applications, we relate our results to equivariant
cohomology and foliation theory, and we give a new description of
quasi-hamiltonian spaces and group-valued momentum maps.Comment: 42 pages. Minor changes, typos corrected. Revised version to appear
in Duke Math.
Surfing the Internet-of-Things: lightweight access and control of wireless sensor networks using industrial low power protocols
Internet-of-Things (IoT) is emerging to play an important role in the continued advancement of information and communication technologies. To accelerate industrial application developments, the use of web services for networking applications is seen as important in IoT communications. In this paper, we present a RESTful web service architecture for energy-constrained wireless sensor networks (WSNs) to enable remote data collection from sensor devices in WSN nodes. Specifically, we consider both IPv6 protocol support in WSN nodes as well as an integrated gateway solution to allow any Internet clients to access these nodes.We describe the implementation of a prototype system, which demonstrates the proposed RESTful approach to collect sensing data from a WSN. A performance evaluation is presented to illustrate the simplicity and efficiency of our proposed scheme
Phonon-phason coupling in icosahedral quasicrystals
From relaxation simulations of decoration-based quasicrystal structure models
using microscopically based interatomic pair potentials, we have calculated the
(usually neglected) phonon-phason coupling constant. Its sign is opposite for
the two alloys studied, i-AlMn and i-(Al,Cu)Li; a dimensionless measure of its
magnitude relative to the phonon and phason elastic constants is of order 1/10,
suggesting its effects are small but detectable. We also give a criterion for
when phonon-phason effects are noticeable in diffuse tails of Bragg peaks.Comment: 7 pages, LaTeX, uses Europhys Lett macros (included
Recent advances in industrial wireless sensor networks towards efficient management in IoT
With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service
Time-dependent Fr\"ohlich transformation approach for two-atom entanglement generated by successive passage through a cavity
Time-dependent Fr\"ohlich transformations can be used to derive an effective
Hamiltonian for a class of quantum systems with time-dependent perturbations.
We use such a transformation for a system with time-dependent atom-photon
coupling induced by the classical motion of two atoms in an inhomogeneous
electromagnetic field. We calculate the entanglement between the two atoms
resulting from their motion through a cavity as a function of their initial
position difference and velocity.Comment: 7 pages, 3 figure
- …