4 research outputs found

    Preparation, Microstructure and Thermal Properties of Aligned Mesophase Pitch-Based Carbon Fiber Interface Materials by an Electrostatic Flocking Method

    No full text
    The mesophase pitch-based carbon fiber interface material (TIM) with a vertical array was prepared by using mesophase pitch-based short-cut fibers (MPCFs) and 3016 epoxy resin as raw materials and carbon nanotubes (CNTs) as additives through electrostatic flocking and resin pouring molding process. The microstructure and thermal properties of the interface were analyzed by using a scanning electron microscope (SEM), laser thermal conductivity and thermal infrared imaging methods. The results indicate that the plate spacing and fusing voltage have a significant impact on the orientation of the arrays formed by mesophase pitch-based carbon fibers. While the orientation of the carbon fiber array has a minimal impact on the shore hardness of TIM, it does have a direct influence on its thermal conductivity. At a flocking voltage of 20 kV and plate spacing of 12 cm, the interface material exhibited an optimal thermal conductivity of 24.47 W/(m路K), shore hardness of 42 A and carbon fiber filling rate of 6.30 wt%. By incorporating 2% carbon nanotubes (CNTs) into the epoxy matrix, the interface material achieves a thermal conductivity of 28.97 W/(m路K) at a flocking voltage of 30 kV and plate spacing of 10 cm. This represents a 52.1% increase in thermal conductivity compared to the material without TIM. The material achieves temperature uniformity within 10 s at the same heat source temperatures, which indicates a good application prospect in IC packaging and electronic heat dissipation

    The Microstructure and Thermal Conductive Behavior of Three-Dimensional Carbon/Carbon Composites with Ultrahigh Thermal Conductivity

    No full text
    Carbon-based composite materials, denoted as C/C composites and possessing high thermal conductivity, were synthesized utilizing a three-dimensional (3D) preform methodology. This involved the orthogonal weaving of mesophase pitch-based fibers in an X (Y) direction derived from low-temperature carbonization, and commercial PAN-based carbon fibers in a Z direction. The 3D preforms were saturated with mesophase pitch in their raw state through a hot-pressing process, which was executed under relatively low pressure at a predetermined temperature. Further densification was achieved by successive stages of mesophase pitch impregnation (MPI), followed by impregnation with coal pitch under high pressure (IPI). The microstructure and thermal conductivity of the C/C composites were systematically examined using a suite of analytical techniques, including Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and PLM, amongst others. The findings suggest that the volumetric fraction of fibers and the directional alignment of the mesophase pitch molecules can be enhanced via hot pressing. The high graphitization degree of the mesophase pitch matrix results in an increased microcrystalline size and thus improved thermal conductivity of the C/C composite. Conversely, the orientation of the medium-temperature coal pitch matrix is relatively low, which compensates for the structural inadequacies of the composite material, albeit contributing minimally to the thermal conductivity of the resultant C/C composites. Following several stages of impregnation with mesophase pitch and subsequent impregnation with medium-temperature coal pitch, the 3D C/C composites yielded a density of 1.83 and 2.02 g/cm3. The thermal conductivity in the X (Y) direction was found to be 358 and 400 W/(m路K), respectively
    corecore