247 research outputs found
Bounded-Distortion Metric Learning
Metric learning aims to embed one metric space into another to benefit tasks
like classification and clustering. Although a greatly distorted metric space
has a high degree of freedom to fit training data, it is prone to overfitting
and numerical inaccuracy. This paper presents {\it bounded-distortion metric
learning} (BDML), a new metric learning framework which amounts to finding an
optimal Mahalanobis metric space with a bounded-distortion constraint. An
efficient solver based on the multiplicative weights update method is proposed.
Moreover, we generalize BDML to pseudo-metric learning and devise the
semidefinite relaxation and a randomized algorithm to approximately solve it.
We further provide theoretical analysis to show that distortion is a key
ingredient for stability and generalization ability of our BDML algorithm.
Extensive experiments on several benchmark datasets yield promising results
Weighted Averaged Stochastic Gradient Descent: Asymptotic Normality and Optimality
Stochastic Gradient Descent (SGD) is one of the simplest and most popular
algorithms in modern statistical and machine learning due to its computational
and memory efficiency. Various averaging schemes have been proposed to
accelerate the convergence of SGD in different settings. In this paper, we
explore a general averaging scheme for SGD. Specifically, we establish the
asymptotic normality of a broad range of weighted averaged SGD solutions and
provide asymptotically valid online inference approaches. Furthermore, we
propose an adaptive averaging scheme that exhibits both optimal statistical
rate and favorable non-asymptotic convergence, drawing insights from the
optimal weight for the linear model in terms of non-asymptotic mean squared
error (MSE)
High Confidence Level Inference is Almost Free using Parallel Stochastic Optimization
Uncertainty quantification for estimation through stochastic optimization
solutions in an online setting has gained popularity recently. This paper
introduces a novel inference method focused on constructing confidence
intervals with efficient computation and fast convergence to the nominal level.
Specifically, we propose to use a small number of independent multi-runs to
acquire distribution information and construct a t-based confidence interval.
Our method requires minimal additional computation and memory beyond the
standard updating of estimates, making the inference process almost cost-free.
We provide a rigorous theoretical guarantee for the confidence interval,
demonstrating that the coverage is approximately exact with an explicit
convergence rate and allowing for high confidence level inference. In
particular, a new Gaussian approximation result is developed for the online
estimators to characterize the coverage properties of our confidence intervals
in terms of relative errors. Additionally, our method also allows for
leveraging parallel computing to further accelerate calculations using multiple
cores. It is easy to implement and can be integrated with existing stochastic
algorithms without the need for complicated modifications
TIFace: Improving Facial Reconstruction through Tensorial Radiance Fields and Implicit Surfaces
This report describes the solution that secured the first place in the "View
Synthesis Challenge for Human Heads (VSCHH)" at the ICCV 2023 workshop. Given
the sparse view images of human heads, the objective of this challenge is to
synthesize images from novel viewpoints. Due to the complexity of textures on
the face and the impact of lighting, the baseline method TensoRF yields results
with significant artifacts, seriously affecting facial reconstruction. To
address this issue, we propose TI-Face, which improves facial reconstruction
through tensorial radiance fields (T-Face) and implicit surfaces (I-Face),
respectively. Specifically, we employ an SAM-based approach to obtain the
foreground mask, thereby filtering out intense lighting in the background.
Additionally, we design mask-based constraints and sparsity constraints to
eliminate rendering artifacts effectively. The experimental results demonstrate
the effectiveness of the proposed improvements and superior performance of our
method on face reconstruction. The code will be available at
https://github.com/RuijieZhu94/TI-Face.Comment: 1st place solution in the View Synthesis Challenge for Human Heads
(VSCHH) at the ICCV 2023 worksho
A Survey on Visual Mamba
State space models (SSM) with selection mechanisms and hardware-aware architectures, namely Mamba, have recently shown significant potential in long-sequence modeling. Since the complexity of transformers’ self-attention mechanism is quadratic with image size, as well as increasing computational demands, researchers are currently exploring how to adapt Mamba for computer vision tasks. This paper is the first comprehensive survey that aims to provide an in-depth analysis of Mamba models within the domain of computer vision. It begins by exploring the foundational concepts contributing to Mamba’s success, including the SSM framework, selection mechanisms, and hardware-aware design. Then, we review these vision Mamba models by categorizing them into foundational models and those enhanced with techniques including convolution, recurrence, and attention to improve their sophistication. Furthermore, we investigate the widespread applications of Mamba in vision tasks, which include their use as a backbone in various levels of vision processing. This encompasses general visual tasks, medical visual tasks (e.g., 2D/3D segmentation, classification, image registration, etc.), and remote sensing visual tasks. In particular, we introduce general visual tasks from two levels: high/mid-level vision (e.g., object detection, segmentation, video classification, etc.) and low-level vision (e.g., image super-resolution, image restoration, visual generation, etc.). We hope this endeavor will spark additional interest within the community to address current challenges and further apply Mamba models in computer vision
Boundary-semantic collaborative guidance network with dual-stream feedback mechanism for salient object detection in optical remote sensing imagery
With the increasing application of deep learning in various domains, salient
object detection in optical remote sensing images (ORSI-SOD) has attracted
significant attention. However, most existing ORSI-SOD methods predominantly
rely on local information from low-level features to infer salient boundary
cues and supervise them using boundary ground truth, but fail to sufficiently
optimize and protect the local information, and almost all approaches ignore
the potential advantages offered by the last layer of the decoder to maintain
the integrity of saliency maps. To address these issues, we propose a novel
method named boundary-semantic collaborative guidance network (BSCGNet) with
dual-stream feedback mechanism. First, we propose a boundary protection
calibration (BPC) module, which effectively reduces the loss of edge position
information during forward propagation and suppresses noise in low-level
features without relying on boundary ground truth. Second, based on the BPC
module, a dual feature feedback complementary (DFFC) module is proposed, which
aggregates boundary-semantic dual features and provides effective feedback to
coordinate features across different layers, thereby enhancing cross-scale
knowledge communication. Finally, to obtain more complete saliency maps, we
consider the uniqueness of the last layer of the decoder for the first time and
propose the adaptive feedback refinement (AFR) module, which further refines
feature representation and eliminates differences between features through a
unique feedback mechanism. Extensive experiments on three benchmark datasets
demonstrate that BSCGNet exhibits distinct advantages in challenging scenarios
and outperforms the 17 state-of-the-art (SOTA) approaches proposed in recent
years. Codes and results have been released on GitHub:
https://github.com/YUHsss/BSCGNet.Comment: Accepted by TGR
Bending Vibration Suppression of a Flexible Multispan Shaft Using Smart Spring Support
Because the flexible multispan shaft in large machines often rotates at supercritical speed, it is desirable to find ways to suppress the resulting bending vibration. In this paper, a novel type of support structure is proposed and investigated, which can suppress the bending vibration using dry friction. This approach is called Smart Spring support (SMSS). A dynamic model for the multispan shaft with SMSS is developed. The relationship between the vibration suppression effect and the control parameters of the SMSS is obtained through a numerical example involving a helicopter tail drive shaft. A structure of the SMSS is designed and examined with a rotor test. The results demonstrate that the SMSS has a significant effect on bending vibration suppression of flexible multispan shafts. The vibration-reduction ratio of the peak amplitude reaches 57.2% in the numerical example and 45.2% in the rotor test
Metabonomic Profiles Delineate the Effect of Traditional Chinese Medicine Sini Decoction on Myocardial Infarction in Rats
Background: In spite of great advances in target-oriented Western medicine for treating myocardial infarction (MI), it is still a leading cause of death in a worldwide epidemic. In contrast to Western medicine, Traditional Chinese medicine (TCM) uses a holistic and synergistic approach to restore the balance of Yin-Yang of body energy so the body’s normal function can be restored. Sini decoction (SND) is a well-known formula of TCM which has been used to treat MI for many years. However, its holistic activity evaluation and mechanistic understanding are still lacking due to its complex components. Methodology/Principal Findings: A urinary metabonomic method based on nuclear magnetic resonance and ultra highperformance liquid chromatography coupled to mass spectrometry was developed to characterize MI-related metabolic profiles and delineate the effect of SND on MI. With Elastic Net for classification and selection of biomarkers, nineteen potential biomarkers in rat urine were screened out, primarily related to myocardial energy metabolism, including the glycolysis, citrate cycle, amino acid metabolism, purine metabolism and pyrimidine metabolism. With the altered metabolism pathways as possible drug targets, we systematically analyze the therapeutic effect of SND, which demonstrated that SND administration could provide satisfactory effect on MI through partially regulating the perturbed myocardial energy metabolism. Conclusions/Significance: Our results showed that metabonomic approach offers a useful tool to identify MI-relate
- …