80,921 research outputs found
Gravitational Lensing Statistics as a Probe of Dark Energy
By using the comoving distance, we derive an analytic expression for the
optical depth of gravitational lensing, which depends on the redshift to the
source and the cosmological model characterized by the cosmic mass density
parameter , the dark energy density parameter and its
equation of state . It is shown that, the larger the
dark energy density is and the more negative its pressure is, the higher the
gravitational lensing probability is. This fact can provide an independent
constraint for dark energy.Comment: 9 pages, 2 figure
Gravitational lensing statistical properties in general FRW cosmologies with dark energy component(s): analytic results
Various astronomical observations have been consistently making a strong case
for the existence of a component of dark energy with negative pressure in the
universe. It is now necessary to take the dark energy component(s) into account
in gravitational lensing statistics and other cosmological tests. By using the
comoving distance we derive analytic but simple expressions for the optical
depth of multiple image, the expected value of image separation and the
probability distribution of image separation caused by an assemble of singular
isothermal spheres in general FRW cosmological models with dark energy
component(s). We also present the kinematical and dynamical properties of these
kinds of cosmological models and calculate the age of the universe and the
distance measures, which are often used in classical cosmological tests. In
some cases we are able to give formulae that are simpler than those found
elsewhere in the literature, which could make the cosmological tests for dark
energy component(s) more convenient.Comment: 14 pages, no figure, Latex fil
Robust variable selection in partially varying coefficient single-index model
By combining basis function approximations and smoothly clipped absolute deviation (SCAD) penalty, this paper proposes a robust variable selection procedure for a partially varying coefficient single-index model based on modal regression. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of the tuning parameters, we establish the theoretical properties of our procedure, including consistency in variable selection and the oracle property in estimation. Furthermore, we also discuss the bandwidth selection and propose a modified expectation-maximization (EM)-type algorithm for the proposed estimation procedure. The finite sample properties of the proposed estimators are illustrated by some simulation examples.The research of Zhu is partially supported by National Natural Science Foundation of China (NNSFC) under Grants 71171075, 71221001 and 71031004. The research of Yu is supported by NNSFC under Grant 11261048
Tackling Challenges in Seebeck Coefficient Measurement of Ultra-High Resistance Samples with an AC Technique
Seebeck coefficient is a widely studied semiconductor property. Conventional Seebeck coefficient measurements are based on DC voltage measurement. Normally this is performed on samples with moderate resistances (e.g., below a few MΩ level). Certain semiconductors are intrinsic and highly resistive. Many examples can be found in optical and photovoltaic materials. The hybrid halide perovskites that have gained extensive attention recently are a good example. Despite great attention from the materials and physics communities, few successful studies exist of the Seebeck coefficient of these compounds, for example CH3NH3PbI3. An AC-technique-based Seebeck coefficient measurement is reported, which makes high-quality Seebeck voltage measurements on samples with resistances up to the 100 GΩ level. This is achieved through a specifically designed setup to enhance sample isolation and increase capacitive impedance. As a demonstration, Seebeck coefficient measurement of a CH3NH3PbI3 thin film is performed at dark, with sample resistance 150 GΩ, and found S = +550 µV K−1. The strategy reported could be applied to the studies of fundamental transport parameters of all intrinsic semiconductors that have not been feasible
- …
