4,747 research outputs found

    Topology and geometry of elliptic Feynman amplitudes

    Full text link
    We report on the analytic computation of the 2-loop amplitude for Bhabha scattering in QED. We study the analytic structure of the amplitude, and reveal its underlying connections to hyperbolic Coxeter groups and arithmetic geometries of elliptic curves.Comment: 12 pages, 4 figures, conferenc

    Two-loop QED corrections to the scattering of four massive leptons

    Full text link
    We study two-loop corrections to the scattering amplitude of four massive leptons in quantum electrodynamics. These amplitudes involve previously unknown elliptic Feynman integrals, which we compute analytically using the differential equation method. In doing so, we uncover the details of the elliptic geometry underlying this scattering amplitude and show how to exploit its properties to obtain compact, easy-to-evaluate series expansions that describe the scattering of four massive leptons in QED in the kinematical regions relevant for Bhabha and M{\o}ller scattering processes.Comment: 9 pages, 3 figure

    Towards Real-World Applications of Personalized Anesthesia Using Policy Constraint Q Learning for Propofol Infusion Control

    Full text link
    Automated anesthesia promises to enable more precise and personalized anesthetic administration and free anesthesiologists from repetitive tasks, allowing them to focus on the most critical aspects of a patient's surgical care. Current research has typically focused on creating simulated environments from which agents can learn. These approaches have demonstrated good experimental results, but are still far from clinical application. In this paper, Policy Constraint Q-Learning (PCQL), a data-driven reinforcement learning algorithm for solving the problem of learning anesthesia strategies on real clinical datasets, is proposed. Conservative Q-Learning was first introduced to alleviate the problem of Q function overestimation in an offline context. A policy constraint term is added to agent training to keep the policy distribution of the agent and the anesthesiologist consistent to ensure safer decisions made by the agent in anesthesia scenarios. The effectiveness of PCQL was validated by extensive experiments on a real clinical anesthesia dataset. Experimental results show that PCQL is predicted to achieve higher gains than the baseline approach while maintaining good agreement with the reference dose given by the anesthesiologist, using less total dose, and being more responsive to the patient's vital signs. In addition, the confidence intervals of the agent were investigated, which were able to cover most of the clinical decisions of the anesthesiologist. Finally, an interpretable method, SHAP, was used to analyze the contributing components of the model predictions to increase the transparency of the model.Comment: 11 pages, 7 figure

    From Canteen Food to Daily Meals: Generalizing Food Recognition to More Practical Scenarios

    Full text link
    The precise recognition of food categories plays a pivotal role for intelligent health management, attracting significant research attention in recent years. Prominent benchmarks, such as Food-101 and VIREO Food-172, provide abundant food image resources that catalyze the prosperity of research in this field. Nevertheless, these datasets are well-curated from canteen scenarios and thus deviate from food appearances in daily life. This discrepancy poses great challenges in effectively transferring classifiers trained on these canteen datasets to broader daily-life scenarios encountered by humans. Toward this end, we present two new benchmarks, namely DailyFood-172 and DailyFood-16, specifically designed to curate food images from everyday meals. These two datasets are used to evaluate the transferability of approaches from the well-curated food image domain to the everyday-life food image domain. In addition, we also propose a simple yet effective baseline method named Multi-Cluster Reference Learning (MCRL) to tackle the aforementioned domain gap. MCRL is motivated by the observation that food images in daily-life scenarios exhibit greater intra-class appearance variance compared with those in well-curated benchmarks. Notably, MCRL can be seamlessly coupled with existing approaches, yielding non-trivial performance enhancements. We hope our new benchmarks can inspire the community to explore the transferability of food recognition models trained on well-curated datasets toward practical real-life applications
    • …
    corecore