605 research outputs found

    Dynamic screening of quasiparticles in WS2_2 monolayers

    Full text link
    We unravel the influence of quasiparticle screening in the non-equilibrium exciton dynamics of monolayer WS2_2. We report pump photon energy-dependent exciton blue/red-shifts from time-resolved-reflectance contrast measurements. Based on a phenomenological model, we isolate the effective impact of excitons and free carriers on the renormalization of the quasi-free particle band gap, exciton binding energy and linewidth broadening. This work provides a comprehensive picture of the competing phenomena governing the exciton dynamics in WS2_2 upon photoexcitation

    Energy-efficient domain wall motion governed by the interplay of helicity-dependent optical effect and spin-orbit torque

    Full text link
    Spin-orbit torque provides a powerful means of manipulating domain walls along magnetic wires. However, the current density required for domain wall motion is still too high to realize low power devices. Here we experimentally demonstrate helicity-dependent domain wall motion by combining synchronized femtosecond laser pulses and short current pulses in Co/Ni/Co ultra-thin film wires with perpendicular magnetization. Domain wall can remain pinned under one laser circular helicity while depinned by the opposite circular helicity. Thanks to the all-optical helicity-dependent effect, the threshold current density due to spin-orbit torque can be reduced by more than 50%. Based on this joint effect combining spin-orbit torque and helicity-dependent laser pulses, an optoelectronic logic-in-memory device has been experimentally demonstrated. This work enables a new class of low power spintronic-photonic devices beyond the conventional approach of all-optical switching or all-current switching for data storage.Comment: 21 pages, 5 figure

    6G Non-Terrestrial Networks Enabled Low-Altitude Economy: Opportunities and Challenges

    Full text link
    The unprecedented development of non-terrestrial networks (NTN) utilizes the low-altitude airspace for commercial and social flying activities. The integration of NTN and terres- trial networks leads to the emergence of low-altitude economy (LAE). A series of LAE application scenarios are enabled by the sensing, communication, and transportation functionalities of the aircrafts. The prerequisite technologies supporting LAE are introduced in this paper, including the network coverage and aircrafts detection. The LAE functionalities assisted by aircrafts with respect to sensing and communication are then summarized, including the terrestrial and non-terrestrial targets sensing, ubiquitous coverage, relaying, and traffic offloading. Finally, several future directions are identified, including aircrafts collaboration, energy efficiency, and artificial intelligence enabled LAE.Comment: This paper has been submitted to IEEE for possible publicatio
    • …
    corecore