863 research outputs found
Person Re-identification by Local Maximal Occurrence Representation and Metric Learning
Person re-identification is an important technique towards automatic search
of a person's presence in a surveillance video. Two fundamental problems are
critical for person re-identification, feature representation and metric
learning. An effective feature representation should be robust to illumination
and viewpoint changes, and a discriminant metric should be learned to match
various person images. In this paper, we propose an effective feature
representation called Local Maximal Occurrence (LOMO), and a subspace and
metric learning method called Cross-view Quadratic Discriminant Analysis
(XQDA). The LOMO feature analyzes the horizontal occurrence of local features,
and maximizes the occurrence to make a stable representation against viewpoint
changes. Besides, to handle illumination variations, we apply the Retinex
transform and a scale invariant texture operator. To learn a discriminant
metric, we propose to learn a discriminant low dimensional subspace by
cross-view quadratic discriminant analysis, and simultaneously, a QDA metric is
learned on the derived subspace. We also present a practical computation method
for XQDA, as well as its regularization. Experiments on four challenging person
re-identification databases, VIPeR, QMUL GRID, CUHK Campus, and CUHK03, show
that the proposed method improves the state-of-the-art rank-1 identification
rates by 2.2%, 4.88%, 28.91%, and 31.55% on the four databases, respectively.Comment: This paper has been accepted by CVPR 2015. For source codes and
extracted features please visit
http://www.cbsr.ia.ac.cn/users/scliao/projects/lomo_xqda
Learning Discriminative Features with Class Encoder
Deep neural networks usually benefit from unsupervised pre-training, e.g.
auto-encoders. However, the classifier further needs supervised fine-tuning
methods for good discrimination. Besides, due to the limits of full-connection,
the application of auto-encoders is usually limited to small, well aligned
images. In this paper, we incorporate the supervised information to propose a
novel formulation, namely class-encoder, whose training objective is to
reconstruct a sample from another one of which the labels are identical.
Class-encoder aims to minimize the intra-class variations in the feature space,
and to learn a good discriminative manifolds on a class scale. We impose the
class-encoder as a constraint into the softmax for better supervised training,
and extend the reconstruction on feature-level to tackle the parameter size
issue and translation issue. The experiments show that the class-encoder helps
to improve the performance on benchmarks of classification and face
recognition. This could also be a promising direction for fast training of face
recognition models.Comment: Accepted by CVPR2016 Workshop of Robust Features for Computer Visio
- …