97 research outputs found

    Raising Tc in charge density wave superconductor ZrTe3 by Ni intercalation

    Full text link
    We report discovery of bulk superconductivity in Ni0.05ZrTe3 at Tc = 3.1 K, obtained through Ni intercalation. Superconductivity coexists with charge density wave (CDW) state with TCDW = 41 K. When compared to parent material ZrTe3, filamentary superconducting transition is substantially increased whereas TCDW was suppressed. The analysis of superconducting state indicates that Ni0.05ZrTe3 is an intermediately coupled superconductor.Comment: 5 pages, 5 figure

    Microscopic evidence for strong periodic lattice distortion in 2D charge-density wave systems

    Full text link
    In the quasi-2D electron systems of the layered transition metal dichalcogenides (TMD) there is still a controversy about the nature of the transitions to charge-density wave (CDW) phases, i.e. whether they are described by a Peierls-type mechanism or by a lattice-driven model. By performing scanning tunneling microscopy (STM) experiments on the canonical TMD-CDW systems, we have imaged the electronic modulation and the lattice distortion separately in 2H-TaS2_2, TaSe2_2, and NbSe2_2. Across the three materials, we found dominant lattice contributions instead of the electronic modulation expected from Peierls transitions, in contrast to the CDW states that show the hallmark of contrast inversion between filled and empty states. Our results imply that the periodic lattice distortion (PLD) plays a vital role in the formation of CDW phases in the TMDs and illustrate the importance of taking into account the more complicated lattice degree of freedom when studying correlated electron systems
    • …
    corecore