31 research outputs found
Stomatal Conductance and Morphology of Arbuscular Mycorrhizal Wheat Plants Response to Elevated CO2 and NaCl Stress
Stomata play a critical role in the regulation of gas exchange between the interior of the leaf and the exterior environment and are affected by environmental and endogenous stimuli. This study aimed to evaluate the effect of the arbuscular mycorrhizal (AM) fungus, Rhizophagus irregularis, on the stomatal behavior of wheat (Triticum aestivum L.) plants under combination with elevated CO2 and NaCl stress. Wheat seedlings were exposed to ambient (400 ppm) or elevated (700 ppm) CO2 concentrations and 0, 1, and 2 g kg−1 dry soil NaCl treatments for 10 weeks. AM symbiosis increased the leaf area and stomatal density (SD) of the abaxial surface. Stomatal size and the aperture of adaxial and abaxial leaf surfaces were higher in the AM than non-AM plants under elevated CO2 and salinity stress. AM plants showed higher stomatal conductance (gs) and maximum rate of gs to water vapor (gsmax) compared with non-AM plants. Moreover, leaf water potential (Ψ) was increased and carbon isotope discrimination (Δ13C) was decreased by AM colonization, and both were significantly associated with stomatal conductance. The results suggest that AM symbiosis alters stomatal morphology by changing SD and the size of the guard cells and stomatal pores, thereby improving the stomatal conductance and water relations of wheat leaves under combined elevated CO2 and salinity stress
Effect of Different Arbuscular Mycorrhizal Fungi on Growth and Physiology of Maize at Ambient and Low Temperature Regimes
The effect of four different arbuscular mycorrhizal fungi (AMF) on the growth and lipid peroxidation, soluble sugar, proline contents, and antioxidant enzymes activities of Zea mays L. was studied in pot culture subjected to two temperature regimes. Maize plants were grown in pots filled with a mixture of sandy and black soil for 5 weeks, and then half of the plants were exposed to low temperature for 1 week while the rest of the plants were grown under ambient temperature and severed as control. Different AMF resulted in different root colonization and low temperature significantly decreased AM colonization. Low temperature remarkably decreased plant height and total dry weight but increased root dry weight and root-shoot ratio. The AM plants had higher proline content compared with the non-AM plants. The maize plants inoculated with Glomus etunicatum and G. intraradices had higher malondialdehyde and soluble sugar contents under low temperature condition. The activities of catalase (CAT) and peroxidase of AM inoculated maize were higher than those of non-AM ones. Low temperature noticeably decreased the activities of CAT. The results suggest that low temperature adversely affects maize physiology and AM symbiosis can improve maize seedlings tolerance to low temperature stress
Effects of Arbuscular Mycorrhiza on Osmotic Adjustment and Photosynthetic Physiology of Maize Seedlings in Black Soils Region of Northeast China
ABSTRACT To investigate the effect of arbuscular mycorrhiza fungi on maize growth, osmoregulation substances and photosynthetic physiology, a popular maize variety ZD 958 was measured under potted condition. Arbuscular mycorrhiza (AM) symbiosis promoted plant growth, and enhanced plant height, leaf length, mean leaf width and dry weight. Higher soluble sugar and protein, but lower proline concentrations were detected in AM seedlings than corresponding non-AM seedlings. Quantum yield of PSII photochemistry and potential photochemical efficiency increased by arbuscular mycorrhiza fungi, meanwhile, AM plants had lower primary fluorescence but higher maximal fluorescence and variable fluorescence than non-AM plants. AM enhanced apparent quantum efficiency, maximum net photosynthetic rate, dark respiration rate and light saturation point, but reduced light compensation point. The conclusion was that, after the seedling inoculated with Glomus. tortuosum, AM symbioses could protect cell from being hurt through regulating substances related to osmotic adjustment, besides, the efficiency of light utilization, the capacity of using low light and the capacity of fitting and using high light were all increased by AM symbiosis
Spatial Changes in Glomalin-Related Soil Protein and Their Correlation with Soil Properties in the Black Soil Region of Northeast China
Glomalin-related soil protein (GRSP), soil nutrients, and soil enzyme activities are closely related to soil fertility and land productivity, which play an important role in indicating soil quality. Little is known about the spatial variation in GRSP and its relationship with edaphic factors. Here, the spatial distribution of GRSP, soil chemical properties, and the soil enzyme activities of 0–20 cm depth farmland soil in the black soil region of northeast China were investigated, and the relationships among edaphic factors were analyzed collected from 41 sampling sites. The results indicate that GRSP, soil organic matter, total nitrogen, and acid phosphatase activities showed significant patterns of spatial variation, generally decreasing from north to south along a latitudinal gradient. Principal component analysis revealed that total GRSP (by 80.19%) and soil organic matter content (by 80.15%) were the greatest contributing factors accounting for the variations. Edaphic factors such as soil organic matter, total nitrogen, total phosphorus, and acid phosphatase were significantly positively correlated with GRSP, while urease was negatively correlated with GRSP. Mantel tests also showed that soil organic matter, total nitrogen, urease, and acid phosphatase were positively correlated with GRSP. The results reflect the soil fertility characteristics of the black soil region of northeast China and reveal the relationship among edaphic factors. These findings could be used to inform agricultural production and provide new insight into the role of GRSP in soil quality