3,106 research outputs found
Economy-wide Impacts of Climate on Agriculture in Sub-Saharan Africa
Two possible adaptation options to climate change for Sub-Saharan Africa are analyzed under the SRES B2 scenario. The first scenario doubles irrigated areas in Sub-Saharan Africa by 2050, compared to the baseline, but keeps total crop area constant. The second scenario increases both rainfed and irrigated crop yields by 25 percent for all Sub-Saharan African countries. The two adaptation scenarios are analyzed with IMPACT, a partial equilibrium agricultural sector model combined with a water simulation model, and with GTAP-W, a general equilibrium model including water resources. The methodology combines advantages of a partial equilibrium approach, considering detailed wateragriculture linkages with a general equilibrium approach, which takes into account linkages between agriculture and non-agricultural sectors and includes a full treatment of factor markets. The efficacy of the two scenarios as adaptation measures to cope with climate change is discussed. Due to the low initial irrigated areas inthe region, an increase in agricultural productivity achieves better outcomes than an expansion of irrigated areas. Even though Sub-Saharan Africa is not a key contributor to global food production or irrigated food production, both scenarios help lower world food prices, stimulating national and international food markets.Computable General Equilibrium, Climate Change, Agriculture, Sub-Saharan Africa, Integrated Assessment Model
Parity Violation in Neutron Capture Reactions
In the last decade, the scattering of polarized neutrons on compound nucleus
resonances proved to be a powerful experimental technique for probing nuclear
parity violation. Longitudinal analyzing powers in neutron transmission
measurements on p-wave resonances in nuclei such as La and Th
were found to be as large as 10%. Here we examine the possibilities of carrying
out a parallel program to measure asymmetries in the ) reaction on
these same compound nuclear resonances. Symmetry-violating ) studies
can also show asymmetries as large as 10%, and have the advantage over
transmission experiments of allowing parity-odd asymmetries in several
different gamma-decay branches from the same resonance. Thus, studies of parity
violation in the reaction using high efficiency germanium
detectors at the Los Alamos Lujan facility, for example, could determine the
parity-odd nucleon-nucleon matrix elements in complex nuclei with high
accuracy. Additionally, simultaneous studies of the E1 and matrix
elements invol ved in these decays could be used to help constrain the
statistical theory of parity non-conservation in compound nuclei.Comment: 10 pages, 1 figur
Quantitative tract-based white matter heritability in 1- and 2-year-old twins
White matter (WM) microstructure, as determined by diffusion tensor imaging (DTI), is increasingly recognized as an important determinant of cognitive function and is also altered in neuropsychiatric disorders. Little is known about genetic and environmental influences on WM microstructure, especially in early childhood, an important period for cognitive development and risk for psychiatric disorders. We studied the heritability of DTI parameters, fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD) along 34 tracts, including 10 bilateral fiber pathways and the respective subdivision, using quantitative tractography in a longitudinal sample of healthy children at 1 year (N = 215) and 2 years (N = 165) of age. We found that heritabilities for whole brain AD, RD, and FA were 0.48, 0.69, and 0.72 at age 1, and 0.59, 0.77, and 0.76 at age 2 and that mean heritabilities of tract-averaged AD, RD, and FA for individual bundles were moderate (over 0.4). However, the heritability of DTI change between 1 and 2 years of age was not significant for most tracts. We also demonstrated that point-wise heritability tended to be significant in the central portions of the tracts and was generally spatially consistent at ages 1 and 2 years. These results, especially when compared to heritability patterns in neonates, indicate that the heritability of WM microstructure is dynamic in early childhood and likely reflect heterogeneous maturation of WM tracts and differential genetic and environmental influences on maturation patterns
What Do We Know About the Strange Magnetic Radius?
We analyze the q^2-dependence of the strange magnetic form factor, \GMS(q^2),
using heavy baryon chiral perturbation theory (HBChPT) and dispersion
relations. We find that in HBChPT a significant cancellation occurs between the
O(p^2) and O(p^3) loop contributions. Consequently, the slope of \GMS at the
origin displays an enhanced sensitivity to an unknown O(p^3) low-energy
constant. Using dispersion theory, we estimate the magnitude of this constant,
show that it may have a natural size, and conclude that the low-q^2 behavior of
\GMS could be dominated by nonperturbative physics. We also discuss the
implications for the interpretation of parity-violating electron scattering
measurements used to measure \GMS(q^2).Comment: 9 pages, Revtex, 2 ps figure
Space-time properties of the higher twist amplitudes
A consistent and intuitive description of the twist-4 corrections to the
hadron structure functions is presented in a QCD-improved parton model using
time-ordered perturbative theory, where the collinear singularities are
naturally eliminated. We identify the special propagators with the backward
propagators of partons in time order.Comment: 18 Pages, Latex, 8 Ps figures, To appear in Phys. Rev.
The Off-diagonal Goldberger-Treiman Relation and Its Discrepancy
We study the off-diagonal Goldberger-Treiman relation (ODGTR) and its
discrepancy (ODGTD) in the N, Delta, pi sector through O(p^2) using heavy
baryon chiral perturbation theory. To this order, the ODGTD and axial vector N
to Delta transition radius are determined solely by low energy constants. Loop
corrections appear at O(p^4). For low-energy constants of natural size, the
ODGTD would represent a ~ 2% correction to the ODGTR. We discuss the
implications of the ODGTR and ODGTD for lattice and quark model calculations of
the transition form factors and for parity-violating electroexcitation of the
Delta.Comment: 11 pages, 1 eps figur
Recoil Order Chiral Corrections to Baryon Octet Axial Currents
We calculate chiral corrections to the octet axial currents through using baryon chiral perturbation theory (BCPT). The relativistic BCPT
framework allows one to sum an infinite series of recoil corrections at a given
order in the chiral expansion. We also include SU(3)-breaking operators
occuring at not previously considered. We determine the
corresponding low-energy constants (LEC's) from hyperon semileptonic decay data
using a variety of infrared regularization schemes. We find that the chiral
expansion of the axial currents does not display the proper convergence
behavior, regardless of which scheme is chosen. We explore the implications of
our analysis for determinations of the strange quark contribution to the
nucleon spin, .Comment: RevTex, 19 pages + 2 PS figure
Anisotropic vortex pinning in superconductors with a square array of rectangular submicron holes
We investigate vortex pinning in thin superconducting films with a square
array of rectangular submicron holes ("antidots"). Two types of antidots are
considered: antidots fully perforating the superconducting film, and "blind
antidots", holes that perforate the film only up to a certain depth. In both
systems, we observe a distinct anisotropy in the pinning properties, reflected
in the critical current Ic, depending on the direction of the applied
electrical current: parallel to the long side of the antidots or perpendicular
to it. Although the mechanism responsible for the effect is very different in
the two systems, they both show a higher critical current and a sharper
IV-transition when the current is applied along the long side of the
rectangular antidots
- …