37,764 research outputs found
Recommended from our members
The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status.
DNA methylation is associated with gene silencing in eukaryotic organisms. Although pathways controlling the establishment, maintenance and removal of DNA methylation are known, relatively little is understood about how DNA methylation influences gene expression. Here we identified a METHYL-CpG-BINDING DOMAIN 7 (MBD7) complex in Arabidopsis thaliana that suppresses the transcriptional silencing of two LUCIFERASE (LUC) reporters via a mechanism that is largely downstream of DNA methylation. Although mutations in components of the MBD7 complex resulted in modest increases in DNA methylation concomitant with decreased LUC expression, we found that these hyper-methylation and gene expression phenotypes can be genetically uncoupled. This finding, along with genome-wide profiling experiments showing minimal changes in DNA methylation upon disruption of the MBD7 complex, places the MBD7 complex amongst a small number of factors acting downstream of DNA methylation. This complex, however, is unique as it functions to suppress, rather than enforce, DNA methylation-mediated gene silencing
Tumor-associated EGFR over-expression specifically activates Stat3 and Smad7 resulting in desensitization of TGF-β signaling
Transforming Growth Factor-[beta] (TGF-[beta]) and Epidermal Growth Factor (EGF) signaling pathways are both independently implicated as key regulators in tumor formation and progression. Here, we demonstrate that activation of the tumor-associated and over-expressed EGFR desensitizes TGF-[beta] signaling and its cytostatic regulation through specific Stat3 activation and Smad7 induction. In normal and tumor human cell lines, reduction of TGF-[beta]-mediated Smad2 phosphorylation, nuclear translocation and Smad3 target gene activation were observed where EGFR is over-expressed, but not in cells which expressed EGFR at normal levels. The EGFR downstream signaling molecules phosphatidyinositol-3 Kinase (PI3K) or mitogen-activated protein kinase/ERK kinase (MEK) are not responsible for the down-regulation of TGF-[beta] signaling since blockade of them by specific pharmacological inhibitors LY294002 and U0126 had little effects on the sensitivity of TGF-[beta] signaling. We identified Stat3 as a signaling molecule activated specifically and persistently by over-expressed EGFR, but not by normal levels. Importantly, Stat3 is responsible for the reduced TGF-[beta] sensitivity, since its knockdown by siRNA restored TGF-[beta] signaling sensitivity. Furthermore, over-expressed EGFR, through Stat3 activates Smad7 promoter activity, increasing its protein levels, which is a negative regulator of TGF-[beta] signaling. Consequently, cells were re-sensitized to TGF-[beta] when Smad7 expression was reduced using siRNA. Therefore we establish a novel EGFR-Stat3-Smad7-TGF-[beta] signaling molecular axis where tumor-associated over-expression of EGFR in epithelial cells results in hyperactivation of Stat3, which activates Smad7 expression, compromising the TGF-[beta]'s cytostatic regulation of epithelium and consequent tumor formation
Selective targeting of activating and inhibitory Smads by distinct WWP2 ubiquitin ligase isoforms differentially modulates TGFβ signalling and EMT
Ubiquitin-dependent mechanisms have emerged as essential regulatory elements controlling cellular levels of Smads and TGFß-dependent biological outputs such as epithelial–mesenchymal transition (EMT). In this study, we identify a HECT E3 ubiquitin ligase known as WWP2 (Full-length WWP2-FL), together with two WWP2 isoforms (N-terminal, WWP2-N; C-terminal WWP2-C), as novel Smad-binding partners. We show that WWP2-FL interacts exclusively with Smad2, Smad3 and Smad7 in the TGFß pathway. Interestingly, the WWP2-N isoform interacts with Smad2 and Smad3, whereas WWP2-C interacts only with Smad7. In addition, WWP2-FL and WWP2-C have a preference for Smad7 based on protein turnover and ubiquitination studies. Unexpectedly, we also find that WWP2-N, which lacks the HECT ubiquitin ligase domain, can also interact with WWP2-FL in a TGFß-regulated manner and activate endogenous WWP2 ubiquitin ligase activity causing degradation of unstimulated Smad2 and Smad3. Consistent with our protein interaction data, overexpression and knockdown approaches reveal that WWP2 isoforms differentially modulate TGFß-dependent transcription and EMT. Finally, we show that selective disruption of WWP2 interactions with inhibitory Smad7 can stabilise Smad7 protein levels and prevent TGFß-induced EMT. Collectively, our data suggest that WWP2-N can stimulate WWP2-FL leading to increased activity against unstimulated Smad2 and Smad3, and that Smad7 is a preferred substrate for WWP2-FL and WWP2-C following prolonged TGFß stimulation. Significantly, this is the first report of an interdependent biological role for distinct HECT E3 ubiquitin ligase isoforms, and highlights an entirely novel regulatory paradigm that selectively limits the level of inhibitory and activating Smads
Survivin a radiogenetic promoter for glioblastoma viral gene therapy independently from CArG motifs
BACKGROUND: Radiogenetic therapy is a novel approach in the treatment of cancer, which employs genetic modification to alter the sensitivity of tumor cells to the effect of applied radiation. AIM: To select a potent radiation inducible promoter in the context of brain tumors and to investigate if CArG radio responsive motifs or other elements in the promoter nucleotide sequences can correlate to its response to radiation. METHODS: To select initial candidates for promoter inducible elements, the levels of mRNA expression of six different promoters were assessed using Quantitative RTPCR in D54 MG cells before and after radiation exposure. Recombinant Ad/reporter genes driven by five different promoters; CMV, VEGF, FLT-1, DR5 and survivin were constructed. Glioma cell lines were infected with different multiplicity of infection of the (promoter) Ad or CMV Ad. Cells were then exposed to a range of radiation (0–12 Gy) at single fraction. Fluorescent microscopy, Luc assay and X-gal staining was used to detect the level of expression of related genes. Different glioma cell lines and normal astrocytes were infected with Ad survivin and exposed to radiation. The promoters were analyzed for presence of CArG radio-responsive motifs and CCAAT box consensus using NCBI blast bioinformatics software. RESULTS: Radiotherapy increases the expression of gene expression by 1.25–2.5 fold in different promoters other than survivin after 2 h of radiation. RNA analysis was done and has shown an increase in copy number of tenfold for survivin. Most importantly cells treated with RT and Ad Luc driven by survivin promoter showed a fivefold increase in expression after 2 Gy of radiation in comparison to non-irradiated cells. Presence or absence of CArG motifs did not correlate with promoter response to radiation. Survivin with the best response to radiation had the lowest number of CCAAT box. CONCLUSION: Survivin is a selective potent radiation inducible promoter for glioblastoma viral gene therapy and this response to radiation could be independent of CArG motifs
Blocking interaction between SHP2 and PD‐1 denotes a novel opportunity for developing PD‐1 inhibitors
Small molecular PD‐1 inhibitors are lacking in current immuno‐oncology clinic. PD‐1/PD‐L1 antibody inhibitors currently approved for clinical usage block interaction between PD‐L1 and PD‐1 to enhance cytotoxicity of CD8+ cytotoxic T lymphocyte (CTL). Whether other steps along the PD‐1 signaling pathway can be targeted remains to be determined. Here, we report that methylene blue (MB), an FDA‐approved chemical for treating methemoglobinemia, potently inhibits PD‐1 signaling. MB enhances the cytotoxicity, activation, cell proliferation, and cytokine‐secreting activity of CTL inhibited by PD‐1. Mechanistically, MB blocks interaction between Y248‐phosphorylated immunoreceptor tyrosine‐based switch motif (ITSM) of human PD‐1 and SHP2. MB enables activated CTL to shrink PD‐L1 expressing tumor allografts and autochthonous lung cancers in a transgenic mouse model. MB also effectively counteracts the PD‐1 signaling on human T cells isolated from peripheral blood of healthy donors. Thus, we identify an FDA‐approved chemical capable of potently inhibiting the function of PD‐1. Equally important, our work sheds light on a novel strategy to develop inhibitors targeting PD‐1 signaling axis
Mir-34a-5p Mediates Cross-Talk between M2 Muscarinic Receptors and Notch-1/EGFR Pathways in U87MG Glioblastoma Cells: Implication in Cell Proliferation
Glioblastoma (GBM) is the most aggressive human brain tumor. The high growth potential and decreased susceptibility to apoptosis of the glioma cells is mainly dependent on genetic amplifications or mutations of oncogenic or pro-apoptotic genes, respectively. We have previously shown that the activation of the M2 acetylcholine muscarinic receptors inhibited cell proliferation and induced apoptosis in two GBM cell lines and cancer stem cells. The aim of this study was to delve into the molecular mechanisms underlying the M2-mediated cell proliferation arrest. Exploiting U87MG and U251MG cell lines as model systems, we evaluated the ability of M2 receptors to interfere with Notch-1 and EGFR pathways, whose activation promotes GBM proliferation. We demonstrated that the activation of M2 receptors, by agonist treatment, counteracted Notch and EGFR signaling, through different regulatory cascades depending, at least in part, on p53 status. Only in U87MG cells, which mimic p53-wild type GBMs, did M2 activation trigger a molecular circuitry involving p53, Notch-1, and the tumor suppressor mir-34a-5p. This regulatory module negatively controls Notch-1, which affects cell proliferation mainly through the Notch-1/EGFR axis. Our data highlighted, for the first time, a molecular circuitry that is deregulated in the p53 wild type GBM, based on the cross-talk between M2 receptor and the Notch-1/EGFR pathways, mediated by mir-34a-5p
- …