24 research outputs found

    Bioactivity-guided fractionation of the triglyceride-lowering component and in vivo and in vitro evaluation of hypolipidemic effects of Calyx seu Fructus Physalis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In folklore, some people take the decoction of <it>Calyx seu Fructus Physalis </it>(CSFP) for lowering blood lipids. The present study is designed to evaluate the lipid-lowering activities of CSFP, and search for its pharmacodynamical material.</p> <p>Methods</p> <p>CSFP was extracted by water and 75% ethanol, respectively. The extracts of CSFP for reducing serum lipid levels were evaluated on mouse model of hyperlipidemia. The optimized extract was subjected to the bioactivity-guided fractionation in which the liquid-liquid extraction, collumn chromatography, the <it>in vivo </it>and <it>in vitro </it>models of hyperlipidemia were utilized. The structure of active component was determined by <sup>13 </sup>C-NMR and <sup>1</sup>H-NMR.</p> <p>Results</p> <p>The 75% ethanol extract of CSFP decreased the serum total cholesterol (TC) and triglyceride (TG) levels in mouse model of hyperlipidemia. Followed a separation process for the 75% ethanol extract of CSFP, the fraction B was proved to be an active fraction for lowering lipid <it>in vivo </it>and <it>in vitro </it>experiments, which could significantly decrease the serum TC and TG levels in mouse model of hyperlipidemia, and remarkably decrease the increase of TG in primary mouse hepatocytes induced by high glucose and the increase of TG in HepG2 cells induced by oleic acid. The fraction B2, isolated from B on bioactivity-guided fractionation, could significantly decrease TG level in HepG2 cells. One compound with the highest content in B2 was isolated and determined as luteolin-7-O-beta-D-glucopyranoside by NMR spectra. It could significantly reduce the TG level in HepG2 cells, and inhibited the accumulation of lipids by oil red O stain.</p> <p>Conclusion</p> <p>Our results demonstrated that the 75% ethanol extract of CSFP could improve <it>in vitro </it>and <it>in vivo </it>lipid accumulation. Luteolin-7-O-beta-D-glucopyranoside might be a leading pharmacodynamical material of CSFP for lowering lipids.</p

    Text as Image: Learning Transferable Adapter for Multi-Label Classification

    Full text link
    Pre-trained vision-language models have notably accelerated progress of open-world concept recognition. Their impressive zero-shot ability has recently been transferred to multi-label image classification via prompt tuning, enabling to discover novel labels in an open-vocabulary manner. However, this paradigm suffers from non-trivial training costs, and becomes computationally prohibitive for a large number of candidate labels. To address this issue, we note that vision-language pre-training aligns images and texts in a unified embedding space, making it potential for an adapter network to identify labels in visual modality while be trained in text modality. To enhance such cross-modal transfer ability, a simple yet effective method termed random perturbation is proposed, which enables the adapter to search for potential visual embeddings by perturbing text embeddings with noise during training, resulting in better performance in visual modality. Furthermore, we introduce an effective approach to employ large language models for multi-label instruction-following text generation. In this way, a fully automated pipeline for visual label recognition is developed without relying on any manual data. Extensive experiments on public benchmarks show the superiority of our method in various multi-label classification tasks

    OEQA: Knowledge- and Intention-Driven Intelligent Ocean Engineering Question-Answering Framework

    No full text
    The constantly updating big data in the ocean engineering domain has challenged the traditional manner of manually extracting knowledge, thereby underscoring the current absence of a knowledge graph framework in such a special field. This paper proposes a knowledge graph framework to fill the gap in the knowledge management application of the ocean engineering field. Subsequently, we propose an intelligent question-answering framework named OEQA based on an ocean engineering-oriented knowledge graph. Firstly, we define the ontology of ocean engineering and adopt a top-down approach to construct a knowledge graph. Secondly, we collect and analyze the data from databases, websites, and textual reports. Based on these collected data, we implement named entity recognition on the unstructured data and extract corresponding relations between entities. Thirdly, we propose an intent-recognizing-based user question classification method, and according to the classification result, construct and fill corresponding query templates by keyword matching. Finally, we use T5-Pegasus to generate natural answers based on the answer entities queried from the knowledge graph. Experimental results show that the accuracy in finding answers is 89.6%. OEQA achieves in the natural answer generation in the ocean engineering domain significant improvements in relevance (1.0912%), accuracy (4.2817%), and practicability (3.1071%) in comparison to ChatGPT

    Sensitive Groups of Bacteria Dictate Microbial Functional Responses to Short-term Warming and N Input in a Semiarid Grassland

    No full text
    Environmental change factors can significantly affect the composition and physiology of soil microbes. How the resulting changes in the community composition are related to microbial functions, however, remains poorly understood. We investigated the effects of climate warming (+ 1.4 degrees C of air temperature and + 0.75 degrees C of soil temperature at 10 cm depth) and reactive nitrogen (N) input (12 g N m(-2) year(-1)) on the community composition and physiologies of soil bacteria in a semiarid Loess grassland. Soil bacterial communities were assessed by Miseq sequencing of 16S rRNA gene amplicons while their physiological properties were assessed by microbial metabolic quotients (qCO(2), microbial respiration per unit of microbial biomass) and microbial community-level physiological profiles (CLPPs). Our results showed that N input, but not warming, altered bacterial community structure, although both warming and N input significantly affected the abundances of certain phyla. While phyla Verrucomicrobia and Chloroflexi were sensitive to warming, Saccharibacteria, Bacteroidetes and Actinobacteria were primarily responsive to N input. Both warming and N input increased microbial metabolic quotients, but only warming significantly impacted soil microbial CLPPs with L-cysteine, oxalic acid, oxoglutaric acid and aminobutyric acid being the sensitive C sources. Structural equation modeling showed that warming and N input influenced soil bacterial phyla through soil moisture, soil NO3--N and plant biomass. The sensitive bacterial phyla, not the whole community property, were significantly correlated with qCO(2) and microbial C utilization. Our findings suggest that responses of bacterial groups sensitive to environmental change factors, rather than the whole community, may exert dominant effects on soil microbial functions under future climate change scenarios

    5-Aminolevulinic acid hydrochloride loaded microbubbles-mediated sonodynamic therapy in pancreatic cancer cells

    No full text
    Abstract5-Aminolevulinic acid hydrochloride (ALA)-mediated sonodynamic therapy (SDT) had anti-tumour effect on pancreatic cancer cells. Hence, ALA loaded lipid/poly(lactic-co-glycolic acid) (PLGA) microbubbles (MBs)-mediated SDT for pancreatic cancer has great potential. The average size of ALA-lipid MBs and ALA-PLGA MBs was about 3.0Ā Āµm. The two kinds of MBs had good biocompatibility to normal HPDE6-C7 cells and were not toxic to pancreatic cancer cells. Compared with ALA-induced SDT, a statistically significant decrease in cell viability was observed in ALA lipid/PLGA MBs combined with ultrasound groups in AsPC-1 and BxPC-3 cells (pā€‰<ā€‰.05). Obvious effect on the apoptotic rate, apoptosis and pyroptosis morphology, enhanced reactive oxygen species was found in ALA-lipid/PLGA MBs mediated SDT inĀ vitro. Through inĀ vivo study, we found ALA-lipid/PLGA MBs-mediated SDT was a promise treatment for pancreatic cancer

    Apoptosis of bone marrow mesenchymal stem cells caused by homocysteine via activating JNK signal.

    Get PDF
    Bone marrow mesenchymal stem cells (BMSCs) are capable of homing to and repair damaged myocardial tissues. Apoptosis of BMSCs in response to various pathological stimuli leads to the attenuation of healing ability of BMSCs. Plenty of evidence has shown that elevated homocysteine level is a novel independent risk factor of cardiovascular diseases. The present study was aimed to investigate whether homocysteine may induce apoptosis of BMSCs and its underlying mechanisms. Here we uncovered that homocysteine significantly inhibited the cellular viability of BMSCs. Furthermore, TUNEL, AO/EB, Hoechst 333342 and Live/Death staining demonstrated the apoptotic morphological appearance of BMSCs after homocysteine treatment. A distinct increase of ROS level was also observed in homocysteine-treated BMSCs. The blockage of ROS by DMTU and NAC prevented the apoptosis of BMSCs induced by homocysteine, indicating ROS was involved in the apoptosis of BMSCs. Moreover, homocysteine also caused the depolarization of mitochondrial membrane potential of BMSCs. Furthermore, apoptotic appearance and mitochondrial membrane potential depolarization in homocysteine-treated BMSCs was significantly reversed by JNK inhibitor but not p38 MAPK and ERK inhibitors. Western blot also confirmed that p-JNK was significantly activated after exposing BMSCs to homocysteine. Homocysteine treatment caused a significant reduction of BMSCs-secreted VEGF and IGF-1 in the culture medium. Collectively, elevated homocysteine induced the apoptosis of BMSCs via ROS-induced the activation of JNK signal, which provides more insight into the molecular mechanisms of hyperhomocysteinemia-related cardiovascular diseases
    corecore