82,136 research outputs found
A 0.18ÎŒm CMOS 300MHz Current-Mode LF Seventh-order Linear Phase Filter for Hard Disk Read Channels
âThis material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." âCopyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.âA 300MHz CMOS seventh-order linear phase gm-C filter based on a current-mode multiple loop feedback (MLF) leap-frog (LF) structure is realized. The filter is implemented using a fully-differential linear operational transconductance amplifier (OTA) based on a source degeneration topology. PSpice simulations using a standard TSMC 0.18ÎŒm CMOS process with 2.5V power supply have shown that the cut-off frequency of the filter can be tuned from 260MHz to 320MHz and dynamic range is about 66dB. Group delay ripple is approximately 4.5% over the whole tuning range and maximum power consumption is 210mW
On the spectral distribution of kernel matrices related to\ud radial basis functions
This paper focuses on the spectral distribution of kernel matrices related to radial basis functions. The asymptotic behaviour of eigenvalues of kernel matrices related to radial basis functions with different smoothness are studied. These results are obtained by estimated the coefficients of an orthogonal expansion of the underlying kernel function. Beside many other results, we prove that there are exactly (k+dâ1/d-1) eigenvalues in the same order for analytic separable kernel functions like the Gaussian in Rd. This gives theoretical support for how to choose the diagonal scaling matrix in the RBF-QR method (Fornberg et al, SIAM J. Sci. Comput. (33), 2011) which can stably compute Gaussian radial basis function interpolants
A 0.18ÎŒm CMOS 9mW current-mode FLF linear phase filter with gain boost
âThis material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." âCopyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.âThe design and implementation of a CMOS continuous-time follow-the-leader-feedback (FLF) filter is described. The filter is implemented using a fully-differential linear, low voltage and low power consumption operational transconductance amplifier (OTA) based on a source degeneration topology. PSpice simulations using a standard TSMC 0.18 mum CMOS process with 2 V power supply have shown that the cut-off frequency of the filter ranges from 55 MHz to 160 MHz and dynamic range is about 45 dB. The group delay is less than 5% over the whole tuning range; the power consumption is only 9 mW
Techniques of replica symmetry breaking and the storage problem of the McCulloch-Pitts neuron
In this article the framework for Parisi's spontaneous replica symmetry
breaking is reviewed, and subsequently applied to the example of the
statistical mechanical description of the storage properties of a
McCulloch-Pitts neuron. The technical details are reviewed extensively, with
regard to the wide range of systems where the method may be applied. Parisi's
partial differential equation and related differential equations are discussed,
and a Green function technique introduced for the calculation of replica
averages, the key to determining the averages of physical quantities. The
ensuing graph rules involve only tree graphs, as appropriate for a
mean-field-like model. The lowest order Ward-Takahashi identity is recovered
analytically and is shown to lead to the Goldstone modes in continuous replica
symmetry breaking phases. The need for a replica symmetry breaking theory in
the storage problem of the neuron has arisen due to the thermodynamical
instability of formerly given solutions. Variational forms for the neuron's
free energy are derived in terms of the order parameter function x(q), for
different prior distribution of synapses. Analytically in the high temperature
limit and numerically in generic cases various phases are identified, among
them one similar to the Parisi phase in the Sherrington-Kirkpatrick model.
Extensive quantities like the error per pattern change slightly with respect to
the known unstable solutions, but there is a significant difference in the
distribution of non-extensive quantities like the synaptic overlaps and the
pattern storage stability parameter. A simulation result is also reviewed and
compared to the prediction of the theory.Comment: 103 Latex pages (with REVTeX 3.0), including 15 figures (ps, epsi,
eepic), accepted for Physics Report
On the gravitational wave background from compact binary coalescences in the band of ground-based interferometers
This paper reports a comprehensive study on the gravitational wave (GW)
background from compact binary coalescences. We consider in our calculations
newly available observation-based neutron star and black hole mass
distributions and complete analytical waveforms that include post-Newtonian
amplitude corrections. Our results show that: (i) post-Newtonian effects cause
a small reduction in the GW background signal; (ii) below 100 Hz the background
depends primarily on the local coalescence rate and the average chirp
mass and is independent of the chirp mass distribution; (iii) the effects of
cosmic star formation rates and delay times between the formation and merger of
binaries are linear below 100 Hz and can be represented by a single parameter
within a factor of ~ 2; (iv) a simple power law model of the energy density
parameter up to 50-100 Hz is sufficient to be used
as a search template for ground-based interferometers. In terms of the
detection prospects of the background signal, we show that: (i) detection (a
signal-to-noise ratio of 3) within one year of observation by the Advanced LIGO
detectors (H1-L1) requires a coalescence rate of for binary neutron stars (binary black holes); (ii) this limit on
could be reduced 3-fold for two co-located detectors, whereas the
currently proposed worldwide network of advanced instruments gives only ~ 30%
improvement in detectability; (iii) the improved sensitivity of the planned
Einstein Telescope allows not only confident detection of the background but
also the high frequency components of the spectrum to be measured. Finally we
show that sub-threshold binary neutron star merger events produce a strong
foreground, which could be an issue for future terrestrial stochastic searches
of primordial GWs.Comment: A few typos corrected to match the published version in MNRA
Nonlinear Schr\"odinger Equation for Superconductors
Using the Hartree-Fock-Bogoliubov factorization of the density matrix and the
Born-Oppenheimer approximation we show that the motion of the condensate
satisfies a nonlinear Schr\"odinger equation in the zero temperature limit. The
Galilean invariance of the equation is explicitly manifested. {}From this
equation some general properties of a superconductor, such as Josephson
effects, the Magnus force, and the Bogoliubov-Anderson mode can be obtained
readily.Comment: Latex, 12 page
- âŠ