14 research outputs found

    Entanglement, quantum randomness, and complexity beyond scrambling

    Get PDF
    Scrambling is a process by which the state of a quantum system is effectively randomized due to the global entanglement that "hides" initially localized quantum information. In this work, we lay the mathematical foundations of studying randomness complexities beyond scrambling by entanglement properties. We do so by analyzing the generalized (in particular R\'enyi) entanglement entropies of designs, i.e. ensembles of unitary channels or pure states that mimic the uniformly random distribution (given by the Haar measure) up to certain moments. A main collective conclusion is that the R\'enyi entanglement entropies averaged over designs of the same order are almost maximal. This links the orders of entropy and design, and therefore suggests R\'enyi entanglement entropies as diagnostics of the randomness complexity of corresponding designs. Such complexities form a hierarchy between information scrambling and Haar randomness. As a strong separation result, we prove the existence of (state) 2-designs such that the R\'enyi entanglement entropies of higher orders can be bounded away from the maximum. However, we also show that the min entanglement entropy is maximized by designs of order only logarithmic in the dimension of the system. In other words, logarithmic-designs already achieve the complexity of Haar in terms of entanglement, which we also call max-scrambling. This result leads to a generalization of the fast scrambling conjecture, that max-scrambling can be achieved by physical dynamics in time roughly linear in the number of degrees of freedom.Comment: 72 pages, 4 figures. Rewritten version with new title. v3: published versio

    Superadditivity of the Classical Capacity with Limited Entanglement Assistance

    Get PDF
    Finding the optimal encoding strategies can be challenging for communication using quantum channels, as classical and quantum capacities may be superadditive. Entanglement assistance can often simplify this task, as the entanglement-assisted classical capacity for any channel is additive, making entanglement across channel uses unnecessary. If the entanglement assistance is limited, the picture is much more unclear. Suppose the classical capacity is superadditive, then the classical capacity with limited entanglement assistance could retain superadditivity by continuity arguments. If the classical capacity is additive, it is unknown if superadditivity can still be developed with limited entanglement assistance. We show this is possible, by providing an example. We construct a channel for which, the classical capacity is additive, but that with limited entanglement assistance can be superadditive. This shows entanglement plays a weird role in communication and we still understand very little about it.Comment: 13 page

    Superadditivity in trade-off capacities of quantum channels

    Full text link
    In this article, we investigate the additivity phenomenon in the dynamic capacity of a quantum channel for trading classical communication, quantum communication and entanglement. Understanding such additivity property is important if we want to optimally use a quantum channel for general communication purpose. However, in a lot of cases, the channel one will be using only has an additive single or double resource capacity, and it is largely unknown if this could lead to an superadditive double or triple resource capacity. For example, if a channel has an additive classical and quantum capacity, can the classical-quantum capacity be superadditive? In this work, we answer such questions affirmatively. We give proof-of-principle requirements for these channels to exist. In most cases, we can provide an explicit construction of these quantum channels. The existence of these superadditive phenomena is surprising in contrast to the result that the additivity of both classical-entanglement and classical-quantum capacity regions imply the additivity of the triple capacity region.Comment: 15 pages. v2: typo correcte

    Iteration Complexity of Variational Quantum Algorithms

    Full text link
    There has been much recent interest in near-term applications of quantum computers. Variational quantum algorithms (VQA), wherein an optimization algorithm implemented on a classical computer evaluates a parametrized quantum circuit as an objective function, are a leading framework in this space. In this paper, we analyze the iteration complexity of VQA, that is, the number of steps VQA required until the iterates satisfy a surrogate measure of optimality. We argue that although VQA procedures incorporate algorithms that can, in the idealized case, be modeled as classic procedures in the optimization literature, the particular nature of noise in near-term devices invalidates the claim of applicability of off-the-shelf analyses of these algorithms. Specifically, the form of the noise makes the evaluations of the objective function via circuits biased, necessitating the perspective of convergence analysis of variants of these classical optimization procedures, wherein the evaluations exhibit systematic bias. We apply our reasoning to the most often used procedures, including SPSA the parameter shift rule, which can be seen as zeroth-order, or derivative-free, optimization algorithms with biased function evaluations. We show that the asymptotic rate of convergence is unaffected by the bias, but the level of bias contributes unfavorably to both the constant therein, and the asymptotic distance to stationarity.Comment: 39 pages, 11 figure

    Explainable AI using expressive Boolean formulas

    Full text link
    We propose and implement an interpretable machine learning classification model for Explainable AI (XAI) based on expressive Boolean formulas. Potential applications include credit scoring and diagnosis of medical conditions. The Boolean formula defines a rule with tunable complexity (or interpretability), according to which input data are classified. Such a formula can include any operator that can be applied to one or more Boolean variables, thus providing higher expressivity compared to more rigid rule-based and tree-based approaches. The classifier is trained using native local optimization techniques, efficiently searching the space of feasible formulas. Shallow rules can be determined by fast Integer Linear Programming (ILP) or Quadratic Unconstrained Binary Optimization (QUBO) solvers, potentially powered by special purpose hardware or quantum devices. We combine the expressivity and efficiency of the native local optimizer with the fast operation of these devices by executing non-local moves that optimize over subtrees of the full Boolean formula. We provide extensive numerical benchmarking results featuring several baselines on well-known public datasets. Based on the results, we find that the native local rule classifier is generally competitive with the other classifiers. The addition of non-local moves achieves similar results with fewer iterations, and therefore using specialized or quantum hardware could lead to a speedup by fast proposal of non-local moves.Comment: 28 pages, 16 figures, 4 table

    Generative Quantum Learning of Joint Probability Distribution Functions

    Full text link
    Modeling joint probability distributions is an important task in a wide variety of fields. One popular technique for this employs a family of multivariate distributions with uniform marginals called copulas. While the theory of modeling joint distributions via copulas is well understood, it gets practically challenging to accurately model real data with many variables. In this work, we design quantum machine learning algorithms to model copulas. We show that any copula can be naturally mapped to a multipartite maximally entangled state. A variational ansatz we christen as a `qopula' creates arbitrary correlations between variables while maintaining the copula structure starting from a set of Bell pairs for two variables, or GHZ states for multiple variables. As an application, we train a Quantum Generative Adversarial Network (QGAN) and a Quantum Circuit Born Machine (QCBM) using this variational ansatz to generate samples from joint distributions of two variables for historical data from the stock market. We demonstrate our generative learning algorithms on trapped ion quantum computers from IonQ for up to 8 qubits and show that our results outperform those obtained through equivalent classical generative learning. Further, we present theoretical arguments for exponential advantage in our model's expressivity over classical models based on communication and computational complexity arguments.Comment: 19 pages, 11 figures. v2: published versio

    Information-theoretic aspects of quantum channels

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2019Cataloged from PDF version of thesis.Includes bibliographical references (pages 165-172).Quantum information theory is an important element of quantum computing and quantum communication systems. Whenever a quantum computer needs to send an output state to another party, or two parties need to establish quantum entanglement or secure keys via quantum communication, a quantum channel is inevitably involved. Hence it is absolutely important to understand the properties of quantum channels for the purpose of communication. Here, quantum entanglement plays a huge role. Pre-shared entanglement could enhance the capacity, whereas entanglement across inputs could render the capacity formulae impossible to compute. The first part of this thesis seeks to address this issue, by studying the additivity properties in the communication of classical and quantum information, with or without entanglement assistance. I also study the reverse problem that, given a channel capacity, what can be said about the quantum channel itself. Quantum information theory also serves as an important tool in understanding other systems, for example, black holes. In this thesis, I model a closed random system by a unitary channel, and study how typical unitary channels process information. This provides huge insight into the strength of generalized entanglement measures, and the hierarchies in the complexity of information scrambling.by Elton Yechao Zhu.Ph. D.Ph.D. Massachusetts Institute of Technology, Department of Physic

    Quantum state preparation of normal distributions using matrix product states

    No full text
    Abstract State preparation is a necessary component of many quantum algorithms. In this work, we combine a method for efficiently representing smooth differentiable probability distributions using matrix product states with recently discovered techniques for initializing quantum states to approximate matrix product states. Using this, we generate quantum states encoding a class of normal probability distributions in a trapped ion quantum computer for up to 20 qubits. We provide an in depth analysis of the different sources of error which contribute to the overall fidelity of this state preparation procedure. Our work provides a study in quantum hardware for scalable distribution loading, which is the basis of a wide range of algorithms that provide quantum advantage

    Superadditivity in Trade-Off Capacities of Quantum Channels

    No full text
    © 2018 IEEE. We investigate the additivity phenomenon in the dynamic capacity of a quantum channel for trading the resources of classical communication, quantum communication, and entanglement. Understanding such an additivity property is important if we want to optimally use a quantum channel for general communication purposes. However, in a lot of cases, the channel one will be using only has an additive single or double resource capacity, and it is largely unknown if this could lead to an superadditive double or triple resource capacity, respectively. For example, if a channel has an additive classical and quantum capacity, can the classical-quantum capacity be superadditive? In this work, we answer such questions affirmatively. We give proof-of-principle requirements for these channels to exist. In most cases, we can provide an explicit construction of these quantum channels. The existence of these superadditive phenomena is surprising in contrast to the result that the additivity of both classical-entanglement and classical-quantum capacity regions imply the additivity of the triple resource capacity region

    Generalized Entanglement Entropies of Quantum Designs

    No full text
    The entanglement properties of random quantum states or dynamics are important to the study of a broad spectrum of disciplines of physics, ranging from quantum information to high energy and many-body physics. This Letter investigates the interplay between the degrees of entanglement and randomness in pure states and unitary channels. We reveal strong connections between designs (distributions of states or unitaries that match certain moments of the uniform Haar measure) and generalized entropies (entropic functions that depend on certain powers of the density operator), by showing that Renyi entanglement entropies averaged over designs of the same order are almost maximal. This strengthens the celebrated Page's theorem. Moreover, we find that designs of an order that is logarithmic in the dimension maximize all Renyi entanglement entropies and so are completely random in terms of the entanglement spectrum. Our results relate the behaviors of Renyi entanglement entropies to the complexity of scrambling and quantum chaos in terms of the degree of randomness, and suggest a generalization of the fast scrambling conjecture
    corecore