47 research outputs found

    Chinese Translation of Children’s Literature: The Late Qing Dynasty (1898-1911)

    Get PDF
    The Late Qing Dynasty (1898-1911) witnessed a great number of translated works of children’s literature from around the world. The present paper, under the guidance of polysysytem theory, attempts to give a synchronic study of the children’s literature translation in the Late Qing Dynasty by focusing on the network of relationship between FCLT and such systems as the canonized literature and the children’s literature in the Late Qing Dynasty. The authors of the paper hold that the change of social attitude towards children in the Late Qing Dynasty gave rise to the demand for the children’s literature and the Chinese children’s literature began to take shape, thus directly bringing about the translation of foreign children’s literature; that FCLT and the canonized literature in the Late Qing Dynasty bear a mutual influence on each other ; and that FCLT had promoted the advent of children’s literature composed by domestic scholars who modeled on the translations of foreign children’s literature. In this way, FCLT in the Late Qing Dynasty not only met the need of children’s literature in the society, but also enlightened the readers of the translations

    Nanoscratch-Induced Formation of Metallic Micro/Nanostructures With Resin Masks

    Get PDF
    Metallic micro/nanostructures present a wide range of applications due to the small size and superior performances. In order to obtain high-performance devices, it is of great importance to develop new methods for preparing metallic micro/nanostructures with high quality, low cost, and precise position. It is found that metallic micro/nanostructures can be obtained by scratch-induced directional deposition of metals on silicon surface, where the mask plays a key role in the process. This study is focused on the preparation of keto-aldehyde resin masks and their effects on the formation of scratch-induced gold (Au) micro/nanostructures. It is also found that the keto-aldehyde resin with a certain thickness can act as a satisfactory mask for high-quality Au deposition, and the scratches produced under lower normal load and less scratching cycles are more conducive to the formation of compact Au structures. According to the proposed method, two-dimensional Au structures can be prepared on the designed scratching traces, providing a feasible path for fabricating high-quality metal-based sensors

    TrimTail: Low-Latency Streaming ASR with Simple but Effective Spectrogram-Level Length Penalty

    Full text link
    In this paper, we present TrimTail, a simple but effective emission regularization method to improve the latency of streaming ASR models. The core idea of TrimTail is to apply length penalty (i.e., by trimming trailing frames, see Fig. 1-(b)) directly on the spectrogram of input utterances, which does not require any alignment. We demonstrate that TrimTail is computationally cheap and can be applied online and optimized with any training loss or any model architecture on any dataset without any extra effort by applying it on various end-to-end streaming ASR networks either trained with CTC loss [1] or Transducer loss [2]. We achieve 100 \sim 200ms latency reduction with equal or even better accuracy on both Aishell-1 and Librispeech. Moreover, by using TrimTail, we can achieve a 400ms algorithmic improvement of User Sensitive Delay (USD) with an accuracy loss of less than 0.2.Comment: submitted to ICASSP 202

    Laser powder bed fusion-built Ti6Al4V bone scaffolds composed of sheet and strut-based porous structures: Morphology, mechanical properties, and biocompatibility

    Get PDF
    Laser powder bed fusion (L-PBF)-built triply periodic minimal surface (TPMS) structures are designed by implicit functions and are endowed with superior characteristics, such as adjustable mechanical properties and light-weight features for bone repairing; thus, they are considered as potential candidates for bone scaffolds. Unfortunately, previous studies have mainly focused on different TPMS structures. The fundamental understanding of the differences between strut and sheet-based structures remains exclusive, where both were designed by one formula. This consequently hinders their practical applications. Herein, we compared the morphology, mechanical properties, and biocompatibility of sheet and strut-based structures. In particular, the different properties and in vivo bone repair effects of the two structures are uncovered. First, the morphology characteristics demonstrate that the manufacturing errors of sheet-based structures with diverse porosities are comparable, and semi-melting powders as well as the ball phenomenon are observed; in comparison, strut-based samples exhibit cracks and thickness shrinking. Second, the mechanical properties indicate that the sheet-based structures have a greater elastic modulus, energy absorption, and better repeatability compared to strut-based structures. Furthermore, layer-by-layer fracturing and diagonal shear failure modes are observed in strut-based and sheet-based structures, respectively. The in vivo experiment demonstrates enhanced bone tissues in the strut-based scaffold. This study significantly enriches our understanding of TPMS structures and provides significant insights in the design of bone scaffolds under various bone damaging conditions

    TableGPT: Towards Unifying Tables, Nature Language and Commands into One GPT

    Full text link
    Tables are prevalent in real-world databases, requiring significant time and effort for humans to analyze and manipulate. The advancements in large language models (LLMs) have made it possible to interact with tables using natural language input, bringing this capability closer to reality. In this paper, we present TableGPT, a unified fine-tuned framework that enables LLMs to understand and operate on tables using external functional commands. It introduces the capability to seamlessly interact with tables, enabling a wide range of functionalities such as question answering, data manipulation (e.g., insert, delete, query, and modify operations), data visualization, analysis report generation, and automated prediction. TableGPT aims to provide convenience and accessibility to users by empowering them to effortlessly leverage tabular data. At the core of TableGPT lies the novel concept of global tabular representations, which empowers LLMs to gain a comprehensive understanding of the entire table beyond meta-information. By jointly training LLMs on both table and text modalities, TableGPT achieves a deep understanding of tabular data and the ability to perform complex operations on tables through chain-of-command instructions. Importantly, TableGPT offers the advantage of being a self-contained system rather than relying on external API interfaces. Moreover, it supports efficient data process flow, query rejection (when appropriate) and private deployment, enabling faster domain data fine-tuning and ensuring data privacy, which enhances the framework's adaptability to specific use cases.Comment: Technical Repor

    Größeneffekte in der Lithium-Speicherung und Phasenübergang im LiFePO4/FePO4-System

    No full text
    LiFePO4 is one of the most promising cathode materials, especially for its great potential to be applied in electric vehicles (EVs) and hybrid electric vehicles (HEVs), and has attracted great interest due to its appealing advantages, such as high theoretical capacity (170 mAhg-1), high safety, environmental benignity and low cost. Although a great improvement has already been reached in terms of electrochemical performance of LiFePO4 by doping, size-reduction, and network formation, several intrinsic properties of LiFePO4 are still not clear and need further investigation. One of the most important unresolved issues is the effect of size on lithium storage and phase transition in the LiFePO4/FePO4 system, which is not only crucial for fundamental understanding of LiFePO4 behavior, but also relevant to the application of such materials. In this thesis, morphology and size controlled synthesis of LiFePO4 and related electrochemical performance are discussed at first. Afterwards, size effects on miscibility gap, lithium potential variations and phase transition process are investigated systematically. The main results of this thesis are the following: Carbon-coated single-crystalline LiFePO4 thin nanowires are successfully prepared by the electrospinning method, which show good rate performance and excellent cycling stability due to the unique morphology. Small LiFePO4 nanoparticles (the thickness only around 10 nm) can be prepared by the oleylamine-assisted polyol method and the particle sizes can be controlled by adjusting experimental parameters, such as the ratio of oleyamine to tetraethylene glycol (TEG), the precursor concentration, the reaction time and the addition of carbon nanotubes. After sintering at 700 °C for 2 hours the material displays excellent electrochemical performance. The shrinking of the miscibility gap with reduction of the particle size is observed by the potentiostatic intermittent titration technique (PITT). Lithium potential variations for nanocrystalline and amorphous LiFePO4 are investigated thermodynamically and experimentally by considering the lithium intercalation regime (single phase regime and two phase regime). For nanocrystalline LiFePO4, the reversible open-circuit voltage (OCV) values decrease with reduction of particle sizes. Surface chemistry (γ) plays a crucial role in the OCV variations. For amorphous LiFePO4, compared with crystalline LixFePO4, the excess OCV can be either negative or positive, which can be explained by the signs of the ionic part and the electronic part of the excess chemical potential of lithium. Phase transition of large LiFePO4 single crystal is investigated by chemical delithiation. FePO4 layers with high porosity and cracks are observed at the surface of LiFePO4. The kinetics is governed by a parabolic growth law that indicates diffusion limitation. The pore/crack network provides fast diffusion channels and enhances the kinetics pronouncedly. With the help of the advanced scanning transmission electron microscopy with annular bright field imaging (STEM-ABF) performed in Sendai (Japan), a first order lithium staging structure is directly observed in the partially delithiated Li1-xFePO4 (x~0.5) nanowires for the first time. Size-dependent staging structure is also found. For large crystals, staging structures form an intermediate phase between LiFePO4 and FePO4, and the staging area narrows with increasing size. For small crystals, the staging structure appears throughout the whole particle.LiFePO4 hat als eines der vielversprechendsten Kathodenmaterialien, vor allem hinsichtlich seines Potentials in Elektro- oder Hybridfahrzeugen kürzlich großes Interesse geweckt. Dies beruht vor allem auf den attraktiven Vorteilen einer hohen theoretischen Kapazität (170 mAhg-1), einer hohen Sicherheit in der Anwendung, einer guten Umweltverträglichkeit und einer preiswerten Verfügbarkeit. Obwohl bereits große Fortschritte in Bezug auf elektrochemische Leistungsfähigkeit von LiFePO4 durch Dotieren, Verringerung der Größe oder Netzwerkbildung erzielt wurden, sind einige intrinsische Eigenschaften von LiFePO4 noch immer nicht aufgeklärt und bedürfen weiter gehender Untersuchungen. Einen der wichtigsten Aspekte stellen die Größeneffekte in Bezug auf Lithiumspeicherung sowie der Phasenübergang in LiFePO4/FePO4-Systemen dar, welche nicht nur für das grundlegende Verständnis des Verhaltens von LiFePO4 bedeutsam sind, sondern auch von hoher Relevanz für die Anwendung dieser Materialien sind. In dieser Arbeit wurden zu Beginn geeignete Synthesen zur Kontrolle der Morphologie und Größe von LiFePO4 sowie die entsprechende elektrochemische Leistungsfähigkeit diskutiert. Im Anschluss daran wurden Größeneffekte auf die Mischungslücke, die Variationen des Lithiumpotentials sowie den Phasenumwandlungsprozess systematisch untersucht. Die hauptsächlichen Schlussfolgerungen sind wie folgt: Mit Kohlenstoff beschichtete einkristalline LiFePO4-Nanodrähte wurden erfolgreich mittels der Methode des Elektrospinnens hergestellt, welche eine gute Ratenleistungskurve und eine exzellente Zyklenstabilität aufgrund der einzigartigen Morphologie aufweisen. Kleine LiFePO4-Partikel (Dicke lediglich ca. 10 nm) können durch die Polyolmethode unter Verwendung von Oleylamin hergestellt werden, während die Partikelgrößen durch schrittweise Anpassung der experimentellen Parameter variiert werden können, wie etwa das Verhältnis von Oleylamin zu TEG, Eduktkonzentration, Reaktionszeit und das Hinzufügen von Kohlenstoffnanoröhrchen. Das Sintern des Materials bei 700 °C für 2 Stunden resultiert in einer guten elektrochemischen Leistungsfähigkeit. Das Schrumpfen der Mischungslücke durch Reduktion der Partikelgröße wurde anhand einer potentiostatischen Puls-Technik verfolgt. Zudem wurden im Ein- und Zweiphasenregime Variationen des Lithiumpotentials für nanokristallines und amorphes LiFePO4 beobachtet und systematisch in thermodynamischer und experimenteller Hinsicht untersucht. Für nanokristallines LiFePO4 wurden verringerte Zellspannungen als Folge der Reduktion der Partikelgrößen gefunden. Es wurde gezeigt, dass nicht nur die Größe, sondern auch die Oberflächenchemie eine entscheidende Rolle spielt. Große Zellspannungseffekte werden auch für amorphes LiFePO4 gefunden, die auf die veränderte Thermodynamik von Ionen- und Elektroneneinbau zurückgehen. Der Phasenübergang innerhalb eines großen LiFePO4-Einkristalls wurde mittels chemischer Delithiierung untersucht. Es entstanden FePO4-Schichten mit hoher Porosität. Die Kinetik wird durch ein quadratisches Wachstumsgesetz bestimmt, was auf Diffusionslimitierung hinweist. Allerdings ist die effektive Diffusion in diesem inhomogenen Netzwerk aus Poren und Rissen gegenüber dem reinen Festkörper deutlich erhöht. Mit Hilfe von speziellen STEM-ABF Techniken konnte eine langreichweitige Ordnung für die partiell delithiierten Li1-xFePO4 (x~0,5) Nanodrähte beobachtet werden. Ebenso wurde beobachtet, dass diese überraschende Struktur auch als Grenzflächenphase zwischen FePO4 und LiFePO4 auftritt. Die Dicke derselben erhöht sich mit kleiner werdender Partikelgröße

    Controller Design of a Brake-By-Wire System Based on Giant-Magnetostrictive Material for an Intelligent Vehicle

    No full text
    Mechatronics control technology can not only improve the performance of vehicles but also solve traditional automotive braking system problems such as long brake pipeline, lots of valve components, slow response and so on. In this paper, a giant-magnetostrictive actuator and a disc brake structure were used to build a drive control system, and the control system module was designed with a single-chip microcomputer as the core. Combined with sensor selection, software programming control was used to build the experimental test platform, and the maximum output displacement of the control system was 0.112156 mm, which was basically consistent with the theoretical calculation. The maximum output force was 3883 N, which exceeded the minimum output force of 3631 N calculated theoretically. According to the results of the test platform, the relevant test parameters were highly consistent with the theoretical calculation, which verified the correctness and effectiveness of the theoretical calculation and bench testbed design. It contributes to the improvement of vehicle active safety performance and can provide a new way for the development of an intelligent vehicle brake-by-wire system

    A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes

    Get PDF
    We report on a new ultrafast solid electrolyte of the composition Li11Si2PS12, which exhibits a higher room-temperature Li ion diffusivity than the present record holder Li10GeP2S12. We discuss the high-pressure synthesis and ion dynamics of tetragonal Li11Si2PS12, and comparison is made with our investigations of related members of the LMePS family, i.e. electrolytes of the general formula Li11-xMe2-xP1+xS12 with Me = Ge, Sn : Li10GeP2S12, Li7GePS8, Li10SnP2S12. The structure and dynamics were studied with multiple complementary techniques and the macroscopic diffusion could be traced back to fast Li ion hopping in the crystalline lattice. A clear correlation between the diffusivity and the unit cell volume of the LGPS-type electrolytes was observed
    corecore