38 research outputs found

    Immunohistochemical localization of mu opioid receptor in the marginal division with comparison to patches in the neostriatum of the rat brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mu opioid receptor (MOR), which plays key roles in analgesia and also has effects on learning and memory, was reported to distribute abundantly in the patches of the neostriatum. The marginal division (MrD) of the neostriatum, which located at the caudomedial border of the neostriatum, was found to stain for enkephalin and substance P immunoreactivities and this region was found to be involved in learning and memory in our previous study. However, whether MOR also exists in the MrD has not yet been determined.</p> <p>Methods</p> <p>In this study, we used western blot analysis and immunoperoxidase histochemical methods with glucose oxidase-DAB-nickel staining to investigate the expression of MOR in the MrD by comparison to the patches in the neostriatum.</p> <p>Results</p> <p>The results from western blot analyses revealed that the antibody to MOR detected a 53 kDa protein band, which corresponded directly to the molecular weight of MOR. Immunohistochemical results showed that punctate MOR-immunoreacted fibers were observed in the "patch" areas in the rostrodorsal part of the neostriatum but these previous studies showed neither labelled neuronal cell bodies, nor were they shown in the caudal part of the neostriatum. Dorsoventrally oriented dark MOR-immunoreactive nerve fibers with individual labelled fusiform cell bodies were firstly observed in the band at the caudomedial border, the MrD, of the neostriatum. The location of the MOR-immunoreactivity was in the caudomedial border of the neostriatum. The morphology of the labelled fusiform neuronal somatas and the dorsoventrally oriented MOR-immunoreacted fibers in the MrD was distinct from the punctate MOR-immunoreactive diffuse mosaic-patterned patches in the neostriatum.</p> <p>Conclusions</p> <p>The results indicated that MOR was expressed in the MrD as well as in patches in the neostriatum of the rat brain, but with different morphological characteristics. The punctate MOR-immunoreactive and diffuse mosaic-patterned patches were located in the rostrodorsal part of the neostriatum. By contrast, in the MrD, the dorsoventrally parallel oriented MOR-immunoreactive fibers with individual labelled fusiform neuronal somatas were densely packed in the caudomedial border of the neostriatum. The morphological difference in MOR immunoreactivity between the MrD and the patches indicated potential functional differences between them. The MOR most likely plays a role in learning and memory associated functions of the MrD.</p

    A Correlation Study between Two Adjacent Same-Meridian Acupoints after Laser-Needle Acupuncture with Optical Coherence Tomography and Diffuse Reflectance Spectra

    Get PDF
    This study is to investigate the correlations among Sanjian (LI3), Hegu (LI4), and Yangxi (LI5) acupoints and their corresponding nonacupoints on the Yangming Large Intestine Meridian of Hand before and after laser irradiation using optical coherence tomography (OCT) and diffuse reflectance spectra. The experiment was conducted on 10 healthy people. A 658 nm laser with 50 mW output power was used for irradiating LI4, LI5 acupoints and their corresponding nonacupoints. As to LI4 acupoint with laser irradiation for duration of 15 or 45 minutes, the OCT backscattered light intensities of LI4 and LI5 acupoints increased significantly, and the reflectance intensities (RIs) of the LI3, LI4, and LI5 acupoints decreased significantly. As to LI5 acupoint with laser irradiation for duration of 15 or 45 minutes, the changes of OCT backscattered light intensities of the corresponding irradiated acupoint and LI4 acupoint increased significantly, and the RIs decreased significantly. However, the OCT backscattered light intensities and RIs for their nonacupoints were almost not changed. The results show that an association exists between two adjacent same-meridian acupoints on the same meridian after laser-needle acupuncture to some extent

    >

    No full text

    Thermal Tomography Imaging in Photonic Traditional Chinese Medicine Information Therapy with Holistic Effect for Health Whole Nursing

    No full text
    A photonic traditional Chinese medicine (TCM) information therapy was developed that has applications in whole health nursing including the prevention and treatment of ischemic cardiovascular and cerebrovascular diseases as well as the conditioning of the subhealth state. This therapy utilizes the beam of a 630 nm LED light to irradiate the oropharynx, while simultaneously employing two beams of 650 nm LED light to irradiate corresponding acupuncture points resulting in a synergistic outcome. This method was named “1 + 2 phototherapy.” The principle mechanism of the therapy is a series of photon induced biological effects that are triggered by stimulating the photosensitive tissues of the oropharynx. This tissue includes the oral mucosa, capillaries, lymph nodes, saliva glands, nerves, and Jingluo and is stimulated by light beams of certain photon energy and imitative acupuncture information. Thermal tomography imaging shows that the average temperature of the upper-body was improved significantly after oropharyngeal irradiation under irradiation of “Futu point”: the heat radiation of the spine, as well as chest, shoulders, arms, and clavicle, increased under irradiation of “Hoku,” whereas the overall average temperature was below the temperature before irradiation. The experiment indicates that this therapy can promote blood circulation, regulate varied physiological parameters, and have holistic effects in whole health nursing

    Monitoring the penetration and accumulation of gold nanoparticles in rat skin ex vivo using surface-enhanced Raman scattering spectroscopy

    No full text
    Contamination by accidental cutaneous contact with the commercial products and the air pollutants raised a considerable health and safety issue. This study aimed to trace the dynamics of the 20 nm gold nanoparticle (GNP) penetration and accumulation in rat skin tissues using a surface-enhanced Raman scattering (SERS) technique. After the topical application of GNPs on rat skin surface, the SERS spectra were recorded for every 15 ÎĽm to an overall depth of 75 ÎĽm from skin surface for 150 min. The processes of GNP penetration in rat skin were accompanied by aggregation of GNPs, which affected SERS spectra. The results revealed that 20 nm GNPs can penetrate through stratum corneum layer, viable epidermis layer, and then into dermis layer. This study demonstrated for the first time the potential of SERS spectroscopy to monitor the penetration and accumulation of GNPs in rat skin

    Black phosphorus–polypyrrole nanocomposites for high-performance photothermal cancer therapy

    Get PDF
    The favorable biocompatibility, biodegradability and broadband absorption in the ultraviolet to near-infrared (NIR) region have made black phosphorus (BP) a new generation two-dimensional nanomaterial with great potential for photothermal therapy (PTT). However, an appropriate but not low dosage of nanoagent is required to achieve the satisfactory therapeutic effect in BP-based NIR PTT, due to the decreasing light absorption of BP in the NIR region. In this work, nanohybrids composed of BP nanosheets and several polypyrrole (PPy) nanoparticles attached to them (BP/PPy NSs) are fabricated for high-performance NIR PTT, benefiting from the superimposed NIR absorption characteristics of the two components. The nanocomposites exhibit irregular, speckled and flake-like morphologies with good biocompatibility and superior NIR photothermal transduction efficiency compared with that of the bare nanosheets. The utilization of BP/PPy NSs as novel nanotherapeutic agent for enhanced NIR photothermal cancer therapy is accomplished in vitro and in vivo

    >

    No full text

    Laser Polishing Die Steel Assisted by Steady Magnetic Field

    No full text
    To improve the surface roughness of SKD61 die steel and reduce the secondary overflow of the molten pool, a steady magnetic field-assisted laser polishing method is proposed to study the effect of steady magnetic field on the surface morphology and melt pool flow behavior of SKD61 die steel. Firstly, a low-energy pulsed laser is used for the removal of impurities from the material surface; then, the CW laser, assisted by steady magnetic field, is used to polish the rough surface of SKD61 die steel to reduce the material surface roughness. The results show that the steady magnetic field-assisted laser polishing can reduce the surface roughness of SKD61 die steel from 6.1 ÎĽm to 0.607 ÎĽm, which is a 90.05% reduction compared with the initial surface roughness. Furthermore, a multi-physical-field numerical transient model involving heat transfer, laminar flow and electromagnetic field is established to simulate the flow state of the molten pool on the surface of the SKD61 die steel. This revealed that the steady magnetic field is able to inhibit the secondary overflow of the molten pool to improve the surface roughness of SKD61 slightly by reducing the velocity of the molten pool. Compared with the molten pool depth obtained experimentally, the molten pool depth simulation was 65 ÎĽm, representing an error 15.0%, thus effectively demonstrating the accuracy of the simulation model

    Strontium-substituted sub-micron bioactive glasses inhibit ostoclastogenesis through suppression of RANKL-induced signaling pathway

    No full text
    Strontium-substituted bioactive glass (Sr-BG) has shown superior performance in bone regeneration. Sr-BG-induced osteogenesis has been extensively studied; however, Sr-BG-mediated osteoclastogenesis and the underlying molecular mechanism remain unclear. It is recognized that the balance of osteogenesis and osteoclastogenesis is closely related to bone repair, and the receptor activators of nuclear factor kappaB ligand (RANKL) signaling pathway plays a key role of in the regulation of osteoclastogenesis. Herein, we studied the potential impact and underling mechanism of strontium-substituted sub-micron bioactive glass (Sr-SBG) on RANKL-induced osteoclast activation and differentiation in vitro. As expected, Sr-SBG inhibited RANKL-mediated osteoclastogenesis significantly with the experimental performance of decreased mature osteoclasts formation and downregulation of osteoclastogenesis-related gene expression. Furthermore, it was found that Sr-SBG might suppress osteoclastogenesis by the combined effect of strontium and silicon released through inhibition of RANKL-induced activation of p38 and NF-ÎşB pathway. These results elaborated the effect of Sr-SBG-based materials on osteoclastogenesis through RANKL-induced downstream pathway and might represent a significant guidance for designing better bone repair materials.</p

    Clamping Fatigue Properties of Shrink-Fit Holder

    No full text
    In order to explore the clamping fatigue properties of shrink-fit holders, ANSYS software was used in this study to analyze the thermal and contact stresses during the clamping process of the shrink-fit holder, and the fatigue analysis was performed by selecting the dangerous areas based on the two stresses. A numerical control shrink-fit holder clamping fatigue test device was manufactured, and the automatic clamping of the shrink-fit holder was executed in this study. After 500 clamping repetitions, a milling test was carried out on the shrink-fit bracket. By collecting the vibration signal of the workpiece during processing and measuring the change in the surface roughness of the workpiece, and then analyzing the change in the machining performance of the shrink-fit holder under different clamping times, we were able to compare and verify the accuracy of the finite element fatigue analysis
    corecore