36 research outputs found

    Magnetic-distortion-induced ellipticity and gravitational wave radiation of neutron stars: millisecond magnetars in short GRBs, Galactic pulsars, and magnetars

    Full text link
    Neutron stars may sustain a non-axisymmetric deformation due to magnetic distortion and are potential sources of continuous gravitational waves (GWs) for ground-based interferometric detectors. With decades of searches using available GW detectors, no evidence of a GW signal from any pulsar has been observed. Progressively stringent upper limits of ellipticity have been placed on Galactic pulsars. In this work, we use the ellipticity inferred from the putative millisecond magnetars in short gamma-ray bursts (SGRBs) to estimate their detectability by current and future GW detectors. For ∼1\sim 1 ms magnetars inferred from the SGRB data, the detection horizon is ∼30\sim 30 Mpc and ∼600\sim 600 Mpc for advanced LIGO (aLIGO) and Einstein Telescope (ET), respectively. Using the ellipticity of SGRB millisecond magnetars as calibration, we estimate the ellipticity and gravitational wave strain of Galactic pulsars and magnetars assuming that the ellipticity is magnetic-distortion-induced. We find that the results are consistent with the null detection results of Galactic pulsars and magnetars with the aLIGO O1. We further predict that the GW signals from these pulsars/magnetars may not be detectable by the currently designed aLIGO detector. The ET detector may be able to detect some relatively low frequency signals (<50<50 Hz) from some of these pulsars. Limited by its design sensitivity, the eLISA detector seems not suitable for detecting the signals from Galactic pulsars and magnetars.Comment: Accepted for publication in Ap

    On Neutralization of Charged Black Holes

    Full text link
    For non-spinning, charged (Reissner–Nordström) black holes, the particles with an opposite sign of charge with respect to that of the black hole will be pulled into the black hole by the extra electromagnetic force. Such a hole will be quickly neutralized so that there should not exist significantly charged, non-spinning black holes in the universe. The case of spinning, charged (Kerr–Newmann, KN) black holes is more complicated. For a given initial position and initial velocity of the particle, an oppositely charged particle does not always more easily fall into the black hole than a neutral particle. The possible existence of a magnetosphere further complicate the picture. One therefore cannot straightforwardly conclude that a charged spinning black hole will be neutralized. In this paper, we make the first step to investigate the neutralization of KN black holes without introducing a magnetosphere. We track the particle trajectories under the influence of the curved space–time and the electromagnetic field carried by the spinning, charged black hole. A statistical method is used to investigate the neutralization problem. We find a universal dependence of the falling probability into the black hole on the charge of the test particle, with the oppositely charged particles having a higher probability of falling. We therefore conclude that charged, spinning black holes without a magnetosphere should be quickly neutralized, consistent with people’s intuition. The neutralization problem of KN black holes with a corotating force-free magnetosphere is subject to further studies

    Lorentz transformation of three dimensional gravitational wave tensor

    Full text link
    Recently there are more and more interest on the gravitational wave of moving sources. This introduces a Lorentz transformation problem of gravitational wave. Although Bondi-Metzner-Sachs (BMS) theory has in principle already included the Lorentz transformation of gravitational wave, the transformation of the three dimensional gravitational wave tensor has not been explicitly calculated before. Within four dimensional spacetime, gravitational wave have property of `boost weight zero' and `spin weight 2'. This fact makes the Lorentz transformation of gravitational wave difficult to understand. In the current paper we adopt the traditional three dimensional tensor description of gravitational wave. Such a transverse-traceless tensor describes the gravitational wave freedom directly. We derive the explicit Lorentz transformation of the gravitational wave tensor. The transformation is similar to the Lorentz transformation for electric field vector and magnetic field vector which are three dimensional vectors. Based on the deduced Lorentz transformation of the gravitational wave three dimensional tensor, we can construct the gravitational waveform of moving source with any speed if only the waveform of the corresponding rest waveform is given. As an example, we apply our method to the effect of kick velocity of binary black hole. The adjusted waveform by the kick velocity is presented.Comment: 17 pages, 8 figure

    The effect of the gravitational constant variation on the propagation of gravitational waves

    Full text link
    Since the first detection of gravitational waves, they have been used to investigate various fundamental problems, including the variation of physical constants. Regarding the gravitational constant, previous works focused on the effect of the gravitational constant variation on the gravitational wave generation. In this paper, we investigate the effect of the gravitational constant variation on the gravitational wave propagation. The Maxwell-like equation that describes the propagation of gravitational waves is extended in this paper to account for situations where the gravitational constant varies. Based on this equation, we find that the amplitude of gravitational waves will be corrected. Consequently the estimated distance to the gravitational wave source without considering such a correction may be biased. Applying our correction result to the well known binary neutron star coalescence event GW170817, we get a constraint on the variation of the gravitational constant. Relating our result to the Yukawa deviation of gravity, we for the first time get the constraint of the Yukawa parameters in 10Mpc scale. This scale corresponds to a graviton mass mg∼10−31m_g\sim10^{-31}eV

    WaveFormer: transformer-based denoising method for gravitational-wave data

    Full text link
    With the advent of gravitational-wave astronomy and the discovery of more compact binary coalescences, data quality improvement techniques are desired to handle the complex and overwhelming noise in gravitational wave (GW) observational data. Though recent machine learning-based studies have shown promising results for data denoising, they are unable to precisely recover both the GW signal amplitude and phase. To address such an issue, we develop a deep neural network centered workflow, WaveFormer, for significant noise suppression and signal recovery on observational data from the Laser Interferometer Gravitational-Wave Observatory (LIGO). The WaveFormer has a science-driven architecture design with hierarchical feature extraction across a broad frequency spectrum. As a result, the overall noise and glitch are decreased by more than one order of magnitude and the signal recovery error is roughly 1% and 7% for the phase and amplitude, respectively. Moreover, on 75 reported binary black hole (BBH) events of LIGO we obtain a significant improvement of inverse false alarm rate. Our work highlights the potential of large neural networks in gravitational wave data analysis and, while primarily demonstrated on LIGO data, its adaptable design indicates promise for broader application within the International Gravitational-Wave Observatories Network (IGWN) in future observational runs

    Population Properties of Gravitational-wave Neutron Star-Black Hole Mergers

    Get PDF
    Over the course of the third observing run of the LIGO-Virgo-KAGRA Collaboration, several gravitational-wave (GW) neutron star-black hole (NSBH) candidates have been announced. By assuming that these candidates are real signals with astrophysical origins, we analyze the population properties of the mass and spin distributions for GW NSBH mergers. We find that the primary BH mass distribution of NSBH systems, whose shape is consistent with that inferred from the GW binary BH (BBH) primaries, can be well described as a power law with an index of α=4.8-2.8+4.5 plus a high-mass Gaussian component peaking at ∼33-9+14M⊙ . The NS mass spectrum could be shaped as a nearly flat distribution between ∼1.0 and 2.1 M ⊙. The constrained NS maximum mass agrees with that inferred from NSs in our Galaxy. If GW190814 and GW200210 are NSBH mergers, the posterior results of the NS maximum mass would be always larger than ∼2.5 M ⊙ and significantly deviate from that inferred in Galactic NSs. The effective inspiral spin and effective precession spin of GW NSBH mergers are measured to potentially have near-zero distributions. The negligible spins for GW NSBH mergers imply that most events in the universe should be plunging events, which support the standard isolated formation channel of NSBH binaries. More NSBH mergers to be discovered in the fourth observing run would help to more precisely model the population properties of cosmological NSBH mergers. © 2022. The Author(s). Published by the American Astronomical Society
    corecore