3 research outputs found

    The Value of a Seven-Autoantibody Panel Combined with the Mayo Model in the Differential Diagnosis of Pulmonary Nodules

    No full text
    Background. Identifying malignant pulmonary nodules and detecting early-stage lung cancer (LC) could reduce mortality. This study investigated the clinical value of a seven-autoantibody (7-AAB) panel in combination with the Mayo model for the early detection of LC and distinguishing benign from malignant pulmonary nodules (MPNs). Methods. The concentrations of the elements of a 7-AAB panel were quantitated by enzyme-linked immunosorbent assay (ELISA) in 806 participants. The probability of MPNs was calculated using the Mayo predictive model. The performances of the 7-AAB panel and the Mayo model were analyzed by receiver operating characteristic (ROC) analyses, and the difference between groups was evaluated by chi-square tests (χ2). Results. The combined area under the ROC curve (AUC) for all 7 AABs was higher than that of a single one. The sensitivities of the 7-AAB panel were 67.5% in the stage I-II LC patients and 60.3% in the stage III-IV patients, with a specificity of 89.6% for the healthy controls and 83.1% for benign lung disease patients. The detection rate of the 7-AAB panel in the early-stage LC patients was higher than that of traditional tumor markers. The AUC of the 7-AAB panel in combination with the Mayo model was higher than that of the 7-AAB panel alone or the Mayo model alone in distinguishing MPN from benign nodules. For early-stage MPN, the sensitivity and specificity of the combination were 93.5% and 58.0%, respectively. For advanced-stage MPN, the sensitivity and specificity of the combination were 91.4% and 72.8%, respectively. The combination of the 7-AAB panel with the Mayo model significantly improved the detection rate of MPN, but the positive predictive value (PPV) and the specificity were not improved when compared with either the 7-AAB panel alone or the Mayo model alone. Conclusion. Our study confirmed the clinical value of the 7-AAB panel for the early detection of lung cancer and in combination with the Mayo model could be used to distinguish benign from malignant pulmonary nodules

    Lack of Efficacy of Combined Carbohydrate Antigen Markers for Lung Cancer Diagnosis

    No full text
    Background. Lung cancer (LC) is top-ranked in cancer incidence and is the leading cause of cancer death globally. Combining serum biomarkers can improve the accuracy of LC diagnosis. The identification of the best potential combination of traditional tumor markers is essential for LC diagnosis. Patients and Methods. Blood samples were collected from 132 LC cases and 118 benign lung disease (BLD) controls. The expression levels of ten serum tumor markers (CYFR21, CEA, NSE, SCC, CA15-3, CA 19-9, CA 125, CA50, CA242, and CA724) were assayed, and that the expression in the levels of tumor markers were evaluated, isolated, and combined in different patients. The performance of the biomarkers was analyzed by receiver operating characteristic (ROC) analyses, and the difference between combinations of biomarkers was compared by Chi-square (χ2) tests. Results. As single markers, CYFR21 and CEA showed good diagnostic efficacy for nonsmall cell lung cancer (NSCLC) patients, while NSE and CEA were the most sensitive in the diagnosis of small cell lung cancer (SCLC). The area under the curve (AUC) value was 0.854 for the panel of four biomarkers (CYFR21, CEA, NSE, and SCC), 0.875 for the panel of six biomarkers (CYFR21, CEA, NSE, SCC, CA125, and CA15-3), and 0.884 for the panel of ten markers (CYFR21, CEA, NSE, SCC, CA125, CA15-3, CA19-9, CA50, CA242, and CA724). With a higher sensitivity and negative predictive value (NPV), the diagnostic accuracy of the three panels was better than that of any single biomarker, but there were no statistically significant differences among them (all P values > 0.05). However, the panel of six carbohydrate antigen (CA) biomarkers (CA125, CA15-3, CA19-9, CA50, CA242, and CA724) showed a lower diagnostic value (AUC: 0.776, sensitivity: 59.8%, specificity: 73.0%, and NPV: 60.4%) than the three panels (P value < 0.05). The performance was similar even when analyzed individually by LC subtypes. Conclusion. The biomarkers isolated are elevated for different types of lung cancer, and the panel of CYFR21, CEA, NSE, and SCC seems to be a promising serum biomarker for the diagnosis of lung cancer, while the combination with carbohydrate antigen markers does not improve the diagnostic efficacy

    Mitochondria-derived small RNAs as diagnostic biomarkers in lung cancer patients through a novel ratio-based expression analysis methodology

    No full text
    Small non-coding RNAs are potential diagnostic biomarkers for lung cancer. Mitochondria-derived small RNA (mtRNA) is a novel regulatory small non-coding RNA that only recently has been identified and cataloged. Currently, there are no reports of studies of mtRNA in human lung cancer. Currently, normalization methods are unstable, and they often fail to identify differentially expressed small non-coding RNAs (sncRNAs). In order to identify reliable biomarkers for lung cancer screening, we used a ratio-based method using mtRNAs newly discovered in human peripheral blood mononuclear cells. In the discovery cohort (AUC = 0.981) and independent validation cohort (AUC = 0.916) the prediction model of eight mtRNA ratios distinguished lung cancer patients from controls. The prediction model will provide reliable biomarkers that will allow blood-based screening to become more feasible and will help make lung cancer diagnosis more accurate in clinical practice
    corecore