81,173 research outputs found

    Scaling of nuclear modification factors for hadrons and light nuclei

    Full text link
    The number of constituent quarks (NCQ-) scaling of hadrons and the number of constituent nucleons (NCN-) scaling of light nuclei are proposed for nuclear modification factors (RcpR_{cp}) of hadrons and light nuclei, respectively, according to the experimental investigations in relativistic heavy-ion collisions. Based on coalescence mechanism the scalings are performed for pions and protons in quark level, and light nuclei d(dˉ)d (\bar d) and 3^3He for nucleonic level, respectively, formed in Au + Au and Pb + Pb collisions and nice scaling behaviour emerges. NCQ or NCN scaling law of RcpR_{cp} can be respectively taken as a probe for quark or nucleon coalescence mechanism for the formation of hadron or light nuclei in relativistic heavy-ion collisions.Comment: 6 pages, 6 figure

    Sensitivity of neutron to proton ratio toward the high density behavior of symmetry energy in heavy-ion collisions

    Full text link
    The symmetry energy at sub and supra-saturation densities has a great importance in understanding the exact nature of asymmetric nuclear matter as well as neutron star, but, it is poor known, especially at supra-saturation densities. We will demonstrate here that the neutron to proton ratios from different kind of fragments is able to determine the supra-saturation behavior of symmetry energy or not. For this purpose, a series of Sn isotopes are simulated at different incident energies using the Isospin Quantum Molecular Dynamics (IQMD) model with either a soft or a stiff symmetry energy for the present study. It is found that the single neutron to proton ratio from free nucleons as well as LCP's is sensitive towards the symmetry energy, incident energy as well as isospin asymmetry of the system. However, with the double neutron to proton ratio, it is true only for the free nucleons. It is possible to study the high density behavior of symmetry energy by using the neutron to proton ratio from free nucleons.Comment: 11 Pages, 9 Figure
    • …
    corecore