18 research outputs found

    A Directed Molecular Evolution Approach to Improved Immunogenicity of the HIV-1 Envelope Glycoprotein

    Get PDF
    A prophylactic vaccine is needed to slow the spread of HIV-1 infection. Optimization of the wild-type envelope glycoproteins to create immunogens that can elicit effective neutralizing antibodies is a high priority. Starting with ten genes encoding subtype B HIV-1 gp120 envelope glycoproteins and using in vitro homologous DNA recombination, we created chimeric gp120 variants that were screened for their ability to bind neutralizing monoclonal antibodies. Hundreds of variants were identified with novel antigenic phenotypes that exhibit considerable sequence diversity. Immunization of rabbits with these gp120 variants demonstrated that the majority can induce neutralizing antibodies to HIV-1. One novel variant, called ST-008, induced significantly improved neutralizing antibody responses when assayed against a large panel of primary HIV-1 isolates. Further study of various deletion constructs of ST-008 showed that the enhanced immunogenicity results from a combination of effective DNA priming, an enhanced V3-based response, and an improved response to the constant backbone sequences

    Current insights into the molecular systems pharmacology of lncRNA-miRNA regulatory interactions and implications in cancer translational medicine

    No full text

    Morphology and ultrastructure of retrovirus particles

    No full text

    G protein-coupled receptors: the evolution of structural insight

    No full text

    Sensitization to cell death induced by soluble Fas ligand and agonistic antibodies with exogenous agents: A review

    No full text

    Headmasters: Microglial regulation of learning and memory in health and disease

    No full text

    Mechanical behaviors and biomedical applications of shape memory materials: A review

    No full text

    Sodium–glucose cotransporter type 2 inhibitors for the treatment of type 2 diabetes mellitus

    No full text
    peer reviewedThe management of type 2 diabetes mellitus (T2DM) is becoming increasingly complex. Sodium-glucose cotransporter type 2 inhibitors (SGLT2is) are the newest antidiabetic agents for T2DM. By targeting the kidney, they have a unique mechanism of action, which results in enhanced glucosuria, osmotic diuresis and natriuresis, thereby improving glucose control with a limited risk of hypoglycaemia and exerting additional positive effects such as weight loss and the lowering of blood pressure. Several outcome studies with canagliflozin, dapagliflozin or empagliflozin reported a statistically significant reduction in major cardiovascular events, hospitalization for heart failure and progression to advanced renal disease in patients with T2DM who have established atherosclerotic cardiovascular disease, several cardiovascular risk factors, albuminuric mild to moderate chronic kidney disease or heart failure. Current guidelines proposed a new paradigm in the management of T2DM, with a preferential place for SGLT2is, after metformin, in patients with atherosclerotic cardiovascular disease, heart failure and progressive kidney disease. Ongoing trials might extend the therapeutic potential of SGLT2is in patients with, but also without, T2DM. This Review provides an update of the current knowledge on SGLT2is, moving from their use as glucose-lowering medications to their new positioning as cardiovascular and renal protective agents

    The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer

    No full text

    Microbial lipases and their industrial applications: a comprehensive review

    No full text
    corecore