42 research outputs found

    Understanding the Overfitting of the Episodic Meta-training

    Full text link
    Despite the success of two-stage few-shot classification methods, in the episodic meta-training stage, the model suffers severe overfitting. We hypothesize that it is caused by over-discrimination, i.e., the model learns to over-rely on the superficial features that fit for base class discrimination while suppressing the novel class generalization. To penalize over-discrimination, we introduce knowledge distillation techniques to keep novel generalization knowledge from the teacher model during training. Specifically, we select the teacher model as the one with the best validation accuracy during meta-training and restrict the symmetric Kullback-Leibler (SKL) divergence between the output distribution of the linear classifier of the teacher model and that of the student model. This simple approach outperforms the standard meta-training process. We further propose the Nearest Neighbor Symmetric Kullback-Leibler (NNSKL) divergence for meta-training to push the limits of knowledge distillation techniques. NNSKL takes few-shot tasks as input and penalizes the output of the nearest neighbor classifier, which possesses an impact on the relationships between query embedding and support centers. By combining SKL and NNSKL in meta-training, the model achieves even better performance and surpasses state-of-the-art results on several benchmarks

    Voxel or Pillar: Exploring Efficient Point Cloud Representation for 3D Object Detection

    Full text link
    Efficient representation of point clouds is fundamental for LiDAR-based 3D object detection. While recent grid-based detectors often encode point clouds into either voxels or pillars, the distinctions between these approaches remain underexplored. In this paper, we quantify the differences between the current encoding paradigms and highlight the limited vertical learning within. To tackle these limitations, we introduce a hybrid Voxel-Pillar Fusion network (VPF), which synergistically combines the unique strengths of both voxels and pillars. Specifically, we first develop a sparse voxel-pillar encoder that encodes point clouds into voxel and pillar features through 3D and 2D sparse convolutions respectively, and then introduce the Sparse Fusion Layer (SFL), facilitating bidirectional interaction between sparse voxel and pillar features. Our efficient, fully sparse method can be seamlessly integrated into both dense and sparse detectors. Leveraging this powerful yet straightforward framework, VPF delivers competitive performance, achieving real-time inference speeds on the nuScenes and Waymo Open Dataset. The code will be available.Comment: Accepted by AAAI-202
    corecore