90,111 research outputs found

    Long-range frustration in T=0 first-step replica-symmetry-broken solutions of finite-connectivity spin glasses

    Full text link
    In a finite-connectivity spin-glass at the zero-temperature limit, long-range correlations exist among the unfrozen vertices (whose spin values being non-fixed). Such long-range frustrations are partially removed through the first-step replica-symmetry-broken (1RSB) cavity theory, but residual long-range frustrations may still persist in this mean-field solution. By way of population dynamics, here we perform a perturbation-percolation analysis to calculate the magnitude of long-range frustrations in the 1RSB solution of a given spin-glass system. We study two well-studied model systems, the minimal vertex-cover problem and the maximal 2-satisfiability problem. This work points to a possible way of improving the zero-temperature 1RSB mean-field theory of spin-glasses.Comment: 5 pages, two figures. To be published in JSTA

    Information-Theoretic Measure of Genuine Multi-Qubit Entanglement

    Get PDF
    We consider pure quantum states of N qubits and study the genuine N-qubit entanglement that is shared among all the N qubits. We introduce an information-theoretic measure of genuine N-qubit entanglement based on bipartite partitions. When N is an even number, this measure is presented in a simple formula, which depends only on the purities of the partially reduced density matrices. It can be easily computed theoretically and measured experimentally. When N is an odd number, the measure can also be obtained in principle.Comment: 5 pages, 2 figure

    Comment on ``Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality"

    Full text link
    In this comment, we investigate a common used algorithm proposed by Newman [M. E. J. Newman, Phys. Rev. E {\bf 64}, 016132(2001)] to calculate the betweenness centrality for all vertices. The inaccurateness of Newman's algorithm is pointed out and a corrected algorithm, also with O(MNMN) time complexity, is given. In addition, the comparison of calculating results for these two algorithm aiming the protein interaction network of Yeast is shown.Comment: 3 pages, 2 tables, and 2 figure

    Spin-Hall and Anisotropic Magnetoresistance in Ferrimagnetic Co-Gd / Pt layers

    Get PDF
    We present the Co-Gd composition dependence of the spin-Hall magnetoresistance (SMR) and anisotropic magnetoresistance (AMR) for ferrimagnetic Co100-xGdx / Pt bilayers. With Gd concentration x, its magnetic moment increasingly competes with the Co moment in the net magnetization. We find a nearly compensated ferrimagnetic state at x = 24. The AMR changes sign from positive to negative with increasing x, vanishing near the magnetization compensation. On the other hand, the SMR does not vary significantly even where the AMR vanishes. These experimental results indicate that very different scattering mechanisms are responsible for AMR and SMR. We discuss a possible origin for the alloy composition dependence.Comment: 31 Pages, 9 figure

    Modeling of Transitional Channel Flow Using Balanced Proper Orthogonal Decomposition

    Full text link
    We study reduced-order models of three-dimensional perturbations in linearized channel flow using balanced proper orthogonal decomposition (BPOD). The models are obtained from three-dimensional simulations in physical space as opposed to the traditional single-wavenumber approach, and are therefore better able to capture the effects of localized disturbances or localized actuators. In order to assess the performance of the models, we consider the impulse response and frequency response, and variation of the Reynolds number as a model parameter. We show that the BPOD procedure yields models that capture the transient growth well at a low order, whereas standard POD does not capture the growth unless a considerably larger number of modes is included, and even then can be inaccurate. In the case of a localized actuator, we show that POD modes which are not energetically significant can be very important for capturing the energy growth. In addition, a comparison of the subspaces resulting from the two methods suggests that the use of a non-orthogonal projection with adjoint modes is most likely the main reason for the superior performance of BPOD. We also demonstrate that for single-wavenumber perturbations, low-order BPOD models reproduce the dominant eigenvalues of the full system better than POD models of the same order. These features indicate that the simple, yet accurate BPOD models are a good candidate for developing model-based controllers for channel flow.Comment: 35 pages, 20 figure

    Field theoretic calculation of scalar turbulence

    Full text link
    The cascade rate of passive scalar and Bachelor's constant in scalar turbulence are calculated using the flux formula. This calculation is done to first order in perturbation series. Batchelor's constant in three dimension is found to be approximately 1.25. In higher dimension, the constant increases as d1/3d^{1/3}.Comment: RevTex4, publ. in Int. J. Mod. Phy. B, v.15, p.3419, 200

    Fermionic R-operator approach for the small-polaron model with open boundary condition

    Full text link
    Exact integrability and algebraic Bethe ansatz of the small-polaron model with the open boundary condition are discussed in the framework of the quantum inverse scattering method (QISM). We employ a new approach where the fermionic R-operator which consists of fermion operators is a key object. It satisfies the Yang-Baxter equation and the reflection equation with its corresponding K-operator. Two kinds of 'super-transposition' for the fermion operators are defined and the dual reflection equation is obtained. These equations prove the integrability and the Bethe ansatz equation which agrees with the one obtained from the graded Yang-Baxter equation and the graded reflection equations.Comment: 10 page
    corecore