98,118 research outputs found
Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals
We discuss a novel method for generating octave-spanning supercontinua and
few-cycle pulses in the important mid-IR wavelength range. The technique relies
on strongly phase-mismatched cascaded second-harmonic generation (SHG) in
mid-IR nonlinear frequency conversion crystals. Importantly we here investigate
the so-called noncritical SHG case, where no phase matching can be achieved but
as a compensation the largest quadratic nonlinearities are exploited. A
self-defocusing temporal soliton can be excited if the cascading nonlinearity
is larger than the competing material self-focusing nonlinearity, and we define
a suitable figure of merit to screen a wide range of mid-IR dielectric and
semiconductor materials with large effective second-order nonlinearities
. The best candidates have simultaneously a large bandgap and a
large . We show selected realistic numerical examples using one of
the promising crystals: in one case soliton pulse compression from 50 fs to 15
fs (1.5 cycles) at 3.0\mic is achieved, and at the same time a 3-cycle
dispersive wave at 5.0\mic is formed that can be isolated using a long-pass
filter. In another example we show that extremely broadband supercontinua can
form spanning the near-IR to the end of the mid-IR (nearly 4 octaves).Comment: submitted to Optics Materials Express special issue on mid-IR
photonic
Non-linear Plasma Wake Growth of Electron Holes
An object's wake in a plasma with small Debye length that drifts
\emph{across} the magnetic field is subject to electrostatic electron
instabilities. Such situations include, for example, the moon in the solar wind
wake and probes in magnetized laboratory plasmas. The instability drive
mechanism can equivalently be considered drift down the potential-energy
gradient or drift up the density-gradient. The gradients arise because the
plasma wake has a region of depressed density and electrostatic potential into
which ions are attracted along the field. The non-linear consequences of the
instability are analysed in this paper. At physical ratios of electron to ion
mass, neither linear nor quasilinear treatment can explain the observation of
large-amplitude perturbations that disrupt the ion streams well before they
become ion-ion unstable. We show here, however, that electron holes, once
formed, continue to grow, driven by the drift mechanism, and if they remain in
the wake may reach a maximum non-linearly stable size, beyond which their
uncontrolled growth disrupts the ions. The hole growth calculations provide a
quantitative prediction of hole profile and size evolution. Hole growth appears
to explain the observations of recent particle-in-cell simulations
Critical domain-wall dynamics of model B
With Monte Carlo methods, we simulate the critical domain-wall dynamics of
model B, taking the two-dimensional Ising model as an example. In the
macroscopic short-time regime, a dynamic scaling form is revealed. Due to the
existence of the quasi-random walkers, the magnetization shows intrinsic
dependence on the lattice size . A new exponent which governs the
-dependence of the magnetization is measured to be .Comment: 10pages, 4 figure
- …