141,246 research outputs found

    Strongly interacting bosons in a disordered optical lattice

    Full text link
    Disorder, prevalent in nature, is intimately involved in such spectacular effects as the fractional quantum Hall effect and vortex pinning in type-II superconductors. Understanding the role of disorder is therefore of fundamental interest to materials research and condensed matter physics. Universal behavior, such as Anderson localization, in disordered non-interacting systems is well understood. But, the effects of disorder combined with strong interactions remains an outstanding challenge to theory. Here, we experimentally probe a paradigm for disordered, strongly-correlated bosonic systems-the disordered Bose-Hubbard (DBH) model-using a Bose-Einstein condensate (BEC) of ultra-cold atoms trapped in a completely characterized disordered optical lattice. We determine that disorder suppresses condensate fraction for superfluid (SF) or coexisting SF and Mott insulator (MI) phases by independently varying the disorder strength and the ratio of tunneling to interaction energy. In the future, these results can constrain theories of the DBH model and be extended to study disorder for strongly-correlated fermionic particles.Comment: 15 pages, 4 figures updated to correct errors in referencing previous wor

    Finite-Element Analysis of Shear-off Failure of Keyed Dry Joints in Precast Concrete Segmental Bridges

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.The structural behaviour of precast concrete segmental bridges is largely dependent on the behaviour of the joints between segments. The current practice is to use small keys that are usually unreinforced, distributed over the height of the web and the flange of concrete segments and these keys are normally dry. In this study, a numerical analysis model was established based on ABAQUS finite element code to investigate structural behaviour of keyed dry joints under direct shear. The concrete damage plasticity model along with the pseudo-damping scheme were incorporated to analyse the system for microcracks and to stabilize the solution, respectively. The numerical model is calibrated by full-scale experimental results published elsewhere. It was found that the predicted ultimate load, cracking evolution history, and final crack pattern agree reasonably well with experiment results. The validated numerical model was then employed for parametric study on factors affecting shear behaviour of keyed dry joints, in this case confining pressure. It has been found that shear capacity predicted by AASHTO diverges from that predicted by numerical analysis at high confining pressure because the contribution of friction in the total shear capacity reduces with the increase in confining pressure. Hence, it is recommended to reduce the friction coefficient used in AASHTO code when high confining pressure is applied. Moreover, the propagation of inclined crack is arrested at high confining pressure due to the fact that the fracture propagation direction is governed by the criterion of the maximum energy release rate

    Resolving the pulsations of subdwarf B stars: HS 0039+4302, HS 0444+0458, and an examination of the group properties of resolved pulsators

    Full text link
    We continue our program of single-site observations of pulsating subdwarf B (sdB) stars and present the results of extensive time series photometry of HS 0039+4302 and HS 0444+0458. Both were observed at MDM Observatory during the fall of 2005. We extend the number of known frequencies for HS 0039+4302 from 4 to 14 and discover one additional frequency for HS 0444+0458, bringing the total to three. We perform standard tests to search for multiplet structure, measure amplitude variations, and examine the frequency density to constrain the mode degree \ell. Including the two stars in this paper, 23 pulsating sdB stars have received follow-up observations designed to decipher their pulsation spectra. It is worth an examination of what has been detected. We compare and contrast the frequency content in terms of richness and range and the amplitudes with regards to variability and diversity. We use this information to examine observational correlations with the proposed κ\kappa pulsation mechanism as well as alternative theories.Comment: 32 pages, 18 figures, 7 tables. Accepted for publication in MNRA

    Entanglement between two fermionic atoms inside a cylindrical harmonic trap

    Get PDF
    We investigate quantum entanglement between two (spin-1/2) fermions inside a cylindrical harmonic trap, making use of the von Neumann entropy for the reduced single particle density matrix as the pure state entanglement measure. We explore the dependence of pair entanglement on the geometry and strength of the trap and on the strength of the pairing interaction over the complete range of the effective BCS to BEC crossover. Our result elucidates an interesting connection between our model system of two fermions and that of two interacting bosons.Comment: to appear in PR

    Demagnetization of cubic Gd-Ba-Cu-O bulk superconductor by cross-fields: measurements and 3D modelling

    Full text link
    Superconducting bulks, acting as high-field permanent magnets, are promising for many applications. An important effect in bulk permanent magnets is crossed-field demagnetization, which can reduce the magnetic field in superconductors due to relatively small transverse fields. Crossed-field demagnetization has not been studied in sample shapes such as rectangular prisms or cubes. This contribution presents a study based on both 3D numerical modelling and experiments. We study a cubic Gd-Ba-Cu-O bulk superconductor sample of size 6 mm magnetized by field cooling in an external field of around 1.3 T, which is later submitted to crossed-field magnetic fields of up to 164 mT. Modelling results agree with experiments, except at transverse fields 50\% or above of the initial trapped field. The current paths present a strong 3D nature. For instance, at the mid-plane perpendicular to the initial magnetizing field, the current density in this direction changes smoothly from the critical magnitude, Jc{J_c}, at the lateral sides to zero at a certain penetration depth. This indicates a rotation of the current density with magnitude Jc{J_c}, and hence force free effects like flux cutting are expected to play a significant role.Comment: 13 pages; 9 figure

    Deflection of Slow Light by Magneto-Optically Controlled Atomic Media

    Full text link
    We present a semi-classical theory for light deflection by a coherent Λ\Lambda-type three-level atomic medium in an inhomogeneous magnetic field or an inhomogeneous control laser. When the atomic energy levels (or the Rabi coupling by the control laser) are position-dependent due to the Zeeman effect by the inhomogeneous magnetic field (or the inhomogeneity of the control field profile), the spatial dependence of the refraction index of the atomic medium will result in an observable deflection of slow signal light when the electromagnetically induced transparency happens to avoid medium absorption. Our theoretical approach based on Fermat's principle in geometrical optics not only provides a consistent explanation for the most recent experiment in a straightforward way, but also predicts the new effects for the slow signal light deflection by the atomic media in an inhomogeneous off-resonant control laser field.Comment: 4 pages, 3 figure
    corecore