3 research outputs found

    Mixing State of Black Carbon Aerosol in a Heavily Polluted Urban Area of China: Implications for Light Absorption Enhancement

    No full text
    Black carbon (BC) is important for climate forcing, and its effects on the Earth&#39;s radiative balance remain a major uncertainty in climate models. In this study, we investigated the mixing state of refractory black carbon (rBC) and aerosol optical properties in a polluted atmosphere at Xi&#39;an, western China. The average rBC mass concentration was 9.9 mu g m (3) during polluted periods, 7.6 times higher than that in clean periods. About 48.6% of the rBC was internally-mixed or coated with nonrefractory materials during polluted periods; this was 27% higher than in clean periods. Correlation analysis between the number fraction of thickly-coated rBC particles (f(BC)) and the major particulate species indicate that organics may be the primary contributor to rBC coatings during polluted periods. The average mass absorption cross section of rBC (MAC(BC)) particles at lambda = 870 nm was 7.6 +/- 0.02 m(2) g(-1) for the entire campaign. The MAC(BC) showed a positive correlation with f(BC), and the enhancement of MAC(BC) due to internal mixing was 1.8 times. These observations suggest that an enhancement of BC absorption by a factor of similar to 2 could be appropriate for climate models associated with high PM2.5 levels.</p

    Development of source profiles and their application insource apportionment of PM2.5 in Xiamen, China

    No full text
    Ambient PM2.5 samples were collected at four sites in Xiamen, including Gulangyu (GLY), Hongwen (HW), Huli (HL) and Jimei (JM) during January, April, July and October 2013. Local source samples were obtained from coal burning power plants, industries, motor vehicles, biomass burning, fugitive dust, and sea salt for the source apportionment studies. The highest value of PM2.5 mass concentration and species related to human activities (SO4 2&ndash;, NO3 &ndash;, Pb, Ni, V, Cu, Cd, organic carbon (OC) and elemental carbon (EC)) were found in the ambient samples from HL, and the highest and lowest loadings of PM2.5 and its components occurred in winter and summer, respectively. The reconstructed mass balance indicated that ambient PM2.5 consisted of 24% OM (organic matter), 23% sulfate, 14% nitrate, 9% ammonium, 9% geological material, 6% sea salt, 5% EC and 10% others. For the source profiles, the dominant components were OC for coal burning, motor vehicle, biomass burning and sea salt; SO4 2&ndash; for industry; and crustal elements for fugitive dust. Source contributions were calculated using a chemical mass balance (CMB) model based on ambient PM2.5 concentrations and the source profiles. GLY was characterized by high contributions from secondary sulfate and cooking, while HL and JM were most strongly affected by motor vehicle emissions, and biomass burning and fugitive dust, respectively. The CMB results indicated that PM2.5 from Xiamen is composed of 27.4% secondary inorganic components, 20.8% motor vehicle emissions, 11.7% fugitive dust, 9.9% sea salt, 9.3% coal burning, 5.0% biomass burning, 3.1% industry and 6.8% others.</p

    Physicochemical characteristics of black carbonaerosol and its radiative impact in a pollutedurban area of China

    No full text
    Black carbon (BC) aerosol plays an important role in the Earth&rsquo;s radiative balance. An intensive measurement campaign was conducted at Xi&rsquo;an, China, from December 2012 to January 2013 to investigate the sources and physicochemical characteristics of refractory BC (rBC) and its direct radiative forcing at the surface. The overall average rBC concentration for the campaign was 8.0 &plusmn; 7.1 &mu;g m 3. Source apportionment based on positive matrix factorization showed that traffic was the dominant rBC source (46.0%), followed by coal burning (33.9%) and biomass burning (20.1%). The rBC mass size distributions were monomodal and lognormal with larger mass median diameters for coal burning source (215 nm) compared with the traffic source (189 nm). Coal burning rBC was more strongly associated with sulfate than traffic rBC, suggesting a higher cloud condensation nuclei activity. The slope of a robust linear regression between rBC and carbon monoxide (CO) for all samples was 5.9 &mu;g m 3 ppm 1, and the slope for the coal burning source (4.5 &mu;g m 3 ppm 1) was larger than that for the traffic source (2.7 &mu;g m 3 ppm 1). The net rBC emission during winter of 2009 was estimated to be 4.5 Gg based on the relationship between rBC and CO. A Tropospheric Ultraviolet and Visible radiation model showed that the average daytime value for the clear-sky direct radiative forcing due to rBC from 23 December 2012 to 31 January 2013 was 47.7 &plusmn; 28.9 W m 2, which amounted to an average of 45.7% of the total surface atmospheric aerosol forcing.</p
    corecore