1,588 research outputs found

    Smooth Solutions and Discrete Imaginary Mass of the Klein-Gordon Equation in the de Sitter Background

    Full text link
    Using methods in the theory of semisimple Lie algebras, we can obtain all smooth solutions of the Klein-Gordon equation on the 4-dimensional de Sitter spacetime (dS^4). The mass of a Klein-Gordon scalar on dS^4 is related to an eigenvalue of the Casimir operator of so(1,4). Thus it is discrete, or quantized. Furthermore, the mass m of a Klein-Gordon scalar on dS^4 is imaginary: m^2 being proportional to -N(N+3), with N >= 0 an integer.Comment: 23 pages, 4 figure

    How to interpret a discovery or null result of the 0ν2β0\nu 2\beta decay

    Get PDF
    The Majorana nature of massive neutrinos will be crucially probed in the next-generation experiments of the neutrinoless double-beta (0ν2β0\nu 2\beta) decay. The effective mass term of this process, ⟨m⟩ee\langle m\rangle^{}_{ee}, may be contaminated by new physics. So how to interpret a discovery or null result of the 0ν2β0\nu 2\beta decay in the foreseeable future is highly nontrivial. In this paper we introduce a novel three-dimensional description of ∣⟨m⟩ee∣|\langle m\rangle_{ee}^{}|, which allows us to see its sensitivity to the lightest neutrino mass and two Majorana phases in a transparent way. We take a look at to what extent the free parameters of ∣⟨m⟩ee∣|\langle m\rangle_{ee}^{}| can be well constrained provided a signal of the 0ν2β0\nu 2\beta decay is observed someday. To fully explore lepton number violation, all the six effective Majorana mass terms ⟨m⟩αβ\langle m\rangle_{\alpha\beta}^{} (for α,β=e,μ,τ\alpha, \beta = e, \mu, \tau) are calculated and their lower bounds are illustrated with the two-dimensional contour figures. The effect of possible new physics on the 0ν2β0\nu 2\beta decay is also discussed in a model-independent way. We find that the result of ∣⟨m⟩ee∣|\langle m\rangle_{ee}^{}| in the normal (or inverted) neutrino mass ordering case modified by the new physics effect may somewhat mimic that in the inverted (or normal) mass ordering case in the standard three-flavor scheme. Hence a proper interpretation of a discovery or null result of the 0ν2β0\nu 2\beta decay may demand extra information from some other measurements.Comment: 13 pages, 6 figures, Figures and references update

    Systematic investigation of the rotational bands in nuclei with Z≈100Z \approx 100 using a particle-number conserving method based on a cranked shell model

    Full text link
    The rotational bands in nuclei with Z≈100Z \approx 100 are investigated systematically by using a cranked shell model (CSM) with the pairing correlations treated by a particle-number conserving (PNC) method, in which the blocking effects are taken into account exactly. By fitting the experimental single-particle spectra in these nuclei, a new set of Nilsson parameters (κ\kappa and μ\mu) and deformation parameters (ε2\varepsilon_2 and ε4\varepsilon_4) are proposed. The experimental kinematic moments of inertia for the rotational bands in even-even, odd-AA and odd-odd nuclei, and the bandhead energies of the 1-quasiparticle bands in odd-AA nuclei, are reproduced quite well by the PNC-CSM calculations. By analyzing the ω\omega-dependence of the occupation probability of each cranked Nilsson orbital near the Fermi surface and the contributions of valence orbitals in each major shell to the angular momentum alignment, the upbending mechanism in this region is understood clearly.Comment: 21 pages, 24 figures, extended version of arXiv: 1101.3607 (Phys. Rev. C83, 011304R); added refs.; added Fig. 4 and discussions; Phys. Rev. C, in pres

    Transport properties of a holographic model with novel gauge-axion coupling

    Full text link
    We investigate the transport properties within a holographic model characterized by a novel gauge-axion coupling. A key innovation is the introduction of the direct coupling between axion fields, the antisymmetric tensor, and the gauge field in our bulk theory. This novel coupling term leads to the emergence of non-diagonal components in the conductivity tensor. An important characteristic is that the off-diagonal elements manifest antisymmetry. Remarkably, the conductivity behavior in this model akin to that of Hall conductivity. Additionally, this model can also achieve metal-insulator transition.Comment: 28 pages, 11 figures, References adde

    Nuclear superfluidity for antimagnetic rotation in 105^{105}Cd and 106^{106}Cd

    Full text link
    The effect of nuclear superfluidity on antimagnetic rotation bands in 105^{105}Cd and 106^{106}Cd are investigated by the cranked shell model with the pairing correlations and the blocking effects treated by a particle-number conserving method. The experimental moments of inertia and the reduced B(E2)B(E2) transition values are excellently reproduced. The nuclear superfluidity is essential to reproduce the experimental moments of inertia. The two-shears-like mechanism for the antimagnetic rotation is investigated by examining the shears angle, i.e., the closing of the two proton hole angular momenta, and its sensitive dependence on the nuclear superfluidity is revealed.Comment: 14 pages, 4 figure
    • …
    corecore