4 research outputs found

    Segment Anything in 3D with NeRFs

    Full text link
    The Segment Anything Model (SAM) has demonstrated its effectiveness in segmenting any object/part in various 2D images, yet its ability for 3D has not been fully explored. The real world is composed of numerous 3D scenes and objects. Due to the scarcity of accessible 3D data and high cost of its acquisition and annotation, lifting SAM to 3D is a challenging but valuable research avenue. With this in mind, we propose a novel framework to Segment Anything in 3D, named SA3D. Given a neural radiance field (NeRF) model, SA3D allows users to obtain the 3D segmentation result of any target object via only one-shot manual prompting in a single rendered view. With input prompts, SAM cuts out the target object from the according view. The obtained 2D segmentation mask is projected onto 3D mask grids via density-guided inverse rendering. 2D masks from other views are then rendered, which are mostly uncompleted but used as cross-view self-prompts to be fed into SAM again. Complete masks can be obtained and projected onto mask grids. This procedure is executed via an iterative manner while accurate 3D masks can be finally learned. SA3D can adapt to various radiance fields effectively without any additional redesigning. The entire segmentation process can be completed in approximately two minutes without any engineering optimization. Our experiments demonstrate the effectiveness of SA3D in different scenes, highlighting the potential of SAM in 3D scene perception. The project page is at https://jumpat.github.io/SA3D/.Comment: Work in progress. Project page: https://jumpat.github.io/SA3D

    NeRFVS: Neural Radiance Fields for Free View Synthesis via Geometry Scaffolds

    Full text link
    We present NeRFVS, a novel neural radiance fields (NeRF) based method to enable free navigation in a room. NeRF achieves impressive performance in rendering images for novel views similar to the input views while suffering for novel views that are significantly different from the training views. To address this issue, we utilize the holistic priors, including pseudo depth maps and view coverage information, from neural reconstruction to guide the learning of implicit neural representations of 3D indoor scenes. Concretely, an off-the-shelf neural reconstruction method is leveraged to generate a geometry scaffold. Then, two loss functions based on the holistic priors are proposed to improve the learning of NeRF: 1) A robust depth loss that can tolerate the error of the pseudo depth map to guide the geometry learning of NeRF; 2) A variance loss to regularize the variance of implicit neural representations to reduce the geometry and color ambiguity in the learning procedure. These two loss functions are modulated during NeRF optimization according to the view coverage information to reduce the negative influence brought by the view coverage imbalance. Extensive results demonstrate that our NeRFVS outperforms state-of-the-art view synthesis methods quantitatively and qualitatively on indoor scenes, achieving high-fidelity free navigation results.Comment: 10 pages, 7 figure

    Enhancing SPARQL Query Generation for Knowledge Base Question Answering Systems by Learning to Correct Triplets

    No full text
    Generating SPARQL queries from natural language questions is challenging in Knowledge Base Question Answering (KBQA) systems. The current state-of-the-art models heavily rely on fine-tuning pretrained models such as T5. However, these methods still encounter critical issues such as triple-flip errors (e.g., (subject, relation, object) is predicted as (object, relation, subject)). To address this limitation, we introduce TSET (Triplet Structure Enhanced T5), a model with a novel pretraining stage positioned between the initial T5 pretraining and the fine-tuning for the Text-to-SPARQL task. In this intermediary stage, we introduce a new objective called Triplet Structure Correction (TSC) to train the model on a SPARQL corpus derived from Wikidata. This objective aims to deepen the model’s understanding of the order of triplets. After this specialized pretraining, the model undergoes fine-tuning for SPARQL query generation, augmenting its query-generation capabilities. We also propose a method named “semantic transformation” to fortify the model’s grasp of SPARQL syntax and semantics without compromising the pre-trained weights of T5. Experimental results demonstrate that our proposed TSET outperforms existing methods on three well-established KBQA datasets: LC-QuAD 2.0, QALD-9 plus, and QALD-10, establishing a new state-of-the-art performance (95.0% F1 and 93.1% QM on LC-QuAD 2.0, 75.85% F1 and 61.76% QM on QALD-9 plus, 51.37% F1 and 40.05% QM on QALD-10)

    DialogueNeRF: Towards Realistic Avatar Face-to-face Conversation Video Generation

    Full text link
    Conversation is an essential component of virtual avatar activities in the metaverse. With the development of natural language processing, textual and vocal conversation generation has achieved a significant breakthrough. Face-to-face conversations account for the vast majority of daily conversations. However, this task has not acquired enough attention. In this paper, we propose a novel task that aims to generate a realistic human avatar face-to-face conversation process and present a new dataset to explore this target. To tackle this novel task, we propose a new framework that utilizes a series of conversation signals, e.g. audio, head pose, and expression, to synthesize face-to-face conversation videos between human avatars, with all the interlocutors modeled within the same network. Our method is evaluated by quantitative and qualitative experiments in different aspects, e.g. image quality, pose sequence trend, and naturalness of the rendering videos. All the code, data, and models will be made publicly available
    corecore