189 research outputs found

    Localization in the Incommensurate Systems: A Plane Wave Study via Effective Potentials

    Full text link
    In this paper, we apply the effective potentials in the localization landscape theory (Filoche et al., 2012, Arnold et al., 2016) to study the spectral properties of the incommensurate systems. We uniquely develop a plane wave method for the effective potentials of the incommensurate systems and utilize that, the localization of the electron density can be inferred from the effective potentials. Moreover, we show that the spectrum distribution can also be obtained from the effective potential version of Weyl's law. We perform some numerical experiments on some typical incommensurate systems, showing that the effective potential provides an alternative tool for investigating the localization and spectrum distribution of the systems.Comment: 14page

    Balanced Quantization: An Effective and Efficient Approach to Quantized Neural Networks

    Full text link
    Quantized Neural Networks (QNNs), which use low bitwidth numbers for representing parameters and performing computations, have been proposed to reduce the computation complexity, storage size and memory usage. In QNNs, parameters and activations are uniformly quantized, such that the multiplications and additions can be accelerated by bitwise operations. However, distributions of parameters in Neural Networks are often imbalanced, such that the uniform quantization determined from extremal values may under utilize available bitwidth. In this paper, we propose a novel quantization method that can ensure the balance of distributions of quantized values. Our method first recursively partitions the parameters by percentiles into balanced bins, and then applies uniform quantization. We also introduce computationally cheaper approximations of percentiles to reduce the computation overhead introduced. Overall, our method improves the prediction accuracies of QNNs without introducing extra computation during inference, has negligible impact on training speed, and is applicable to both Convolutional Neural Networks and Recurrent Neural Networks. Experiments on standard datasets including ImageNet and Penn Treebank confirm the effectiveness of our method. On ImageNet, the top-5 error rate of our 4-bit quantized GoogLeNet model is 12.7\%, which is superior to the state-of-the-arts of QNNs

    EAST: An Efficient and Accurate Scene Text Detector

    Full text link
    Previous approaches for scene text detection have already achieved promising performances across various benchmarks. However, they usually fall short when dealing with challenging scenarios, even when equipped with deep neural network models, because the overall performance is determined by the interplay of multiple stages and components in the pipelines. In this work, we propose a simple yet powerful pipeline that yields fast and accurate text detection in natural scenes. The pipeline directly predicts words or text lines of arbitrary orientations and quadrilateral shapes in full images, eliminating unnecessary intermediate steps (e.g., candidate aggregation and word partitioning), with a single neural network. The simplicity of our pipeline allows concentrating efforts on designing loss functions and neural network architecture. Experiments on standard datasets including ICDAR 2015, COCO-Text and MSRA-TD500 demonstrate that the proposed algorithm significantly outperforms state-of-the-art methods in terms of both accuracy and efficiency. On the ICDAR 2015 dataset, the proposed algorithm achieves an F-score of 0.7820 at 13.2fps at 720p resolution.Comment: Accepted to CVPR 2017, fix equation (3

    Convergence of the Planewave Approximations for Quantum Incommensurate Systems

    Full text link
    Incommensurate structures come from stacking the single layers of low-dimensional materials on top of one another with misalignment such as a twist in orientation. While these structures are of significant physical interest, they pose many theoretical challenges due to the loss of periodicity. This paper studies the spectrum distribution of incommensurate Schr\"{o}dinger operators. We characterize the density of states for the incommensurate system and develop novel numerical methods to approximate them. In particular, we (i) justify the thermodynamic limit of the density of states in the real space formulation; and (ii) propose efficient numerical schemes to evaluate the density of states based on planewave approximations and reciprocal space sampling. We present both rigorous analysis and numerical simulations to support the reliability and efficiency of our numerical algorithms.Comment: 29 page

    Synergy between type 1 fimbriae expression and C3 opsonisation increases internalisation of E. coli by human tubular epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacterial infection of the urinary tract is a common clinical problem with <it>E. coli </it>being the most common urinary pathogen. Bacterial uptake into epithelial cells is increasingly recognised as an important feature of infection. Bacterial virulence factors, especially fimbrial adhesins, have been conclusively shown to promote host cell invasion. Our recent study reported that C3 opsonisation markedly increases the ability of <it>E. coli </it>strain J96 to internalise into human proximal tubular epithelial cells via CD46, a complement regulatory protein expressed on host cell membrane. In this study, we further assessed whether C3-dependent internalisation by human tubular epithelial cells is a general feature of uropathogenic <it>E. coli </it>and investigated features of the bacterial phenotype that may account for any heterogeneity.</p> <p>Results</p> <p>In 31 clinical isolates of <it>E. coli </it>tested, C3-dependent internalisation was evident in 10 isolates. Type 1 fimbriae mediated-binding is essential for C3-dependent internalisation as shown by phenotypic association, type 1 fimbrial blockade with soluble ligand (mannose) and by assessment of a type 1 fimbrial mutant.</p> <p>Conclusion</p> <p>we propose that efficient internalisation of uropathogenic <it>E. coli </it>by the human urinary tract depends on co-operation between type 1 fimbriae-mediated adhesion and C3 receptor -ligand interaction.</p

    Learning Raw Image Denoising with Bayer Pattern Unification and Bayer Preserving Augmentation

    Full text link
    In this paper, we present new data pre-processing and augmentation techniques for DNN-based raw image denoising. Compared with traditional RGB image denoising, performing this task on direct camera sensor readings presents new challenges such as how to effectively handle various Bayer patterns from different data sources, and subsequently how to perform valid data augmentation with raw images. To address the first problem, we propose a Bayer pattern unification (BayerUnify) method to unify different Bayer patterns. This allows us to fully utilize a heterogeneous dataset to train a single denoising model instead of training one model for each pattern. Furthermore, while it is essential to augment the dataset to improve model generalization and performance, we discovered that it is error-prone to modify raw images by adapting augmentation methods designed for RGB images. Towards this end, we present a Bayer preserving augmentation (BayerAug) method as an effective approach for raw image augmentation. Combining these data processing technqiues with a modified U-Net, our method achieves a PSNR of 52.11 and a SSIM of 0.9969 in NTIRE 2019 Real Image Denoising Challenge, demonstrating the state-of-the-art performance. Our code is available at https://github.com/Jiaming-Liu/BayerUnifyAug.Comment: Accepted by CVPRW 201
    corecore