49 research outputs found

    The Mechanical Behavior of the Cable-in-Conduit Conductor in the ITER Project

    Get PDF
    Cable-in-conduit conductor (CICC) has wide applications, and this structure is often served to undergo heat force-electromagnetic coupled field in practical utilization, especially in the magnetic confinement fusion (e.g., Tokamak). The mechanical behavior in CICC is of relevance to understanding the mechanical response and cannot be ignored for assessing the safety of these superconducting structures. In this chapter, several mechanical models were established to analyze the mechanical behavior of the CICC in Tokamak device, and the key mechanical problems such as the equivalent mechanical parameters of the superconducting cable, the untwisting behavior in the process of insertion, the buckling behavior of the superconducting wire under the action of the thermo-electromagnetic static load, and the Tcs (current sharing temperature) degradation under the thermo-electromagnetic cyclic loads are studied. Finally, we summarize the existing problems and the future research points on the basis of the previous research results, which will help the related researchers to figure out the mechanical behavior of CICC more easily

    The Strain Energy Release Rate for Stack of Coated Conductors with Interface Crack in Perpendicular Magnetic Field

    Get PDF
    Due to the ability of transporting huge current in the stack of high-temperature superconducting conductors, the electromagnetic body force generated by the interaction of magnetic field and current may affect the mechanical stability of structure. In this paper, the fracture behavior of the stack of coated conductors which contains an interface crack is studied for increasing field and decreasing field. The body forces are obtained with variational formulation for the Bean’s critical state model. Based on the virtual crack closure technique (VCCT), the strain energy release rate of the stack of coated conductors with an interface crack is determined. The strain energy release rates are compared for different crack positions, crack lengths, magnetic fields and the thicknesses of substrate, respectively. These results may be useful for the practical application

    An Attempt to Understand Kidney's Protein Handling Function by Comparing Plasma and Urine Proteomes

    Get PDF
    With the help of proteomics technology, the human plasma and urine proteomes, which closely represent the protein compositions of the input and output of the kidney, respectively, have been profiled in much greater detail by different research teams. Many datasets have been accumulated to form “reference profiles” of the plasma and urine proteomes. Comparing these two proteomes may help us understand the protein handling aspect of kidney function in a way, however, which has been unavailable until the recent advances in proteomics technology.After removing secreted proteins downstream of the kidney, 2611 proteins in plasma and 1522 in urine were identified with high confidence and compared based on available proteomic data to generate three subproteomes, the plasma-only subproteome, the plasma-and-urine subproteome, and the urine-only subproteome, and they correspond to three groups of proteins that are handled in three different ways by the kidney. The available experimental molecular weights of the proteins in the three subproteomes were collected and analyzed. Since the functions of the overrepresented proteins in the plasma-and-urine subproteome are probably the major functions that can be routinely regulated by excretion from the kidney in physiological conditions, Gene Ontology term enrichment in the plasma-and-urine subproteome versus the whole plasma proteome was analyzed. Protease activity, calcium and growth factor binding proteins, and coagulation and immune response-related proteins were found to be enriched.The comparison method described in this paper provides an illustration of a new approach for studying organ functions with a proteomics methodology. Because of its distinctive input (plasma) and output (urine), it is reasonable to predict that the kidney will be the first organ whose functions are further elucidated by proteomic methods in the near future. It can also be anticipated that there will be more applications for proteomics in organ function research

    Analysis of charging and sudden-discharging characteristics of no-insulation REBCO coil using an electromagnetic coupling model

    No full text
    No-insulation (NI) high-temperature superconducting (HTS) REBCO coil has been a promising candidate for manufacturing high-field superconducting magnets with high thermal stability and self-protecting features. When NI coil is operated at the external field, it is necessary to analyze charging and sudden-discharging characteristics of NI coil by considering the effect of magnetic field. In addition, the self-field effect has an obvious influence on the critical current for large-scale coil. Thus, an electromagnetic coupling model in which an equivalent circuit axisymmetric model considers the effect of magnetic field is proposed. The results show that when the radial current exists, the coil voltage and central field will tend to be stable faster. In a high field, the decrease of the critical current leads to the increase of radial current and this effect is more obvious for a larger field. And the charging time with the increase of the external field reduces significantly, while the sudden-discharging time is almost unchanged. For NI coils composed of many double-pancake coils, the charging time and sudden-discharging time proportionally increase with the increase of the number of double-pancake coil and turn number of single-pancake coil

    Wavelet method applied to specific adhesion of elastic solids via molecular bonds

    Get PDF
    We propose a wavelet method to analyze the stochastic-elastic problem of specific adhesion between two elastic solids via ligand-receptor bond clusters, which is governed by a nonlinear integro-differential equation with a singular Cauchy kernel to describe the mean-field coupling between deformation of elastic materials and stochastic behavior of the molecular bonds. To solve this problem, Galerkin method based on a wavelet approximation scheme is adopted, and special treatment which transforms the singular Cauchy kernel into a smooth one has been proposed to avoid the cumbersome calculation of singular integrals. Numerical results demonstrate that the method is fully capable of solving the specific adhesion problems with complex nonlinear and singular equations. Based on the proposed method, investigations are performed to reveal the relation between steady-state pulling force and mean surface separation under different stress concentration indexes, which is crucial for assembling the overall constitutive relations for multicellular tumor spheroids and polymer-matrix microcomposites

    A Space-Time Fully Decoupled Wavelet Galerkin Method for Solving Multidimensional Nonlinear Schrödinger Equations with Damping

    No full text
    On the basis of sampling approximation for a function defined on a bounded interval by combining Coiflet-type wavelet expansion and technique of boundary extension, a space-time fully decoupled formulation is proposed to solve multidimensional Schrödinger equations with generalized nonlinearities and damping. By applying a wavelet Galerkin approach for spatial discretization, nonlinear Schrödinger equations are first transformed into a system of ordinary differential equations, in which all matrices are completely independent of time and never need to be recalculated in the time integration. Then, the classical fourth-order explicit Runge–Kutta method is used to solve the resulting semidiscretization system. By studying several widely considered test problems, results demonstrate that when a relatively fine mesh is adopted, the present wavelet algorithm has a much better computational accuracy and efficiency than many existing numerical methods, due to its higher order of convergence in space which can go up to 6

    A Space-Time Fully Decoupled Wavelet Integral Collocation Method with High-Order Accuracy for a Class of Nonlinear Wave Equations

    No full text
    A space-time fully decoupled wavelet integral collocation method (WICM) with high-order accuracy is proposed for the solution of a class of nonlinear wave equations. With this method, wave equations with various nonlinearities are first transformed into a system of ordinary differential equations (ODEs) with respect to the highest-order spatial derivative values at spatial nodes, in which all the matrices in the resulting nonlinear ODEs are constants over time. As a result, these matrices generated in the spatial discretization do not need to be updated in the time integration, such that a fully decoupling between spatial and temporal discretization can be achieved. A linear multi-step method based on the same wavelet approximation used in the spatial discretization is then employed to solve such a semi-discretization system. By numerically solving several widely considered benchmark problems, including the Klein/sine–Gordon equation and the generalized Benjamin–Bona–Mahony–Burgers equation, we demonstrate that the proposed wavelet algorithm possesses much better accuracy and a faster convergence rate than many existing numerical methods. Most interestingly, the space-associated convergence rate of the present WICM is always about order 6 for different equations with various nonlinearities, which is in the same order with direct approximation of a function in terms of the proposed wavelet approximation scheme. This fact implies that the accuracy of the proposed method is almost independent of the equation order and nonlinearity

    First-principles study on elastic and superconducting properties of Nb3Sn and Nb3Al under hydrostatic pressure

    No full text
    The low temperature superconducting materials, such as Nb3Sn and Nb3Al, have similar crystal structures and elastic properties. However, their critical-temperature degradations always show the distinct way under mechanical stresses. In this study, first-principles calculations for the low temperature superconductors based on plane-wave pseudo-potential density functional theory within the generalized gradient approximation are implemented, and the elastic moduli of Nb3Sn and Nb3Al and those superconductivities in the presence of hydrostatic pressure are evaluated. The Debye temperatures are obtained by the bulk moduli and shear moduli of superconducting materials. The MacMillan equation is further used to acquire the critical temperatures of Nb3Sn and Nb3Al under different hydrostatic pressures. It is found that the elastic constants and bulk moduli of the low temperature superconductors are enhanced by the applied hydrostatic pressure, while the critical temperatures usually are decreased with the pressure. Additionally, the decrease of critical-temperature for Nb3Sn is more sensitive to the hydrostatic pressure than the one for Nb3Al. The prediction results show good agreement with the experimental results in the literatures qualitatively
    corecore