57 research outputs found

    Constructing a new integrated genetic linkage map and mapping quantitative trait loci for vegetative mycelium growth rate in Lentinula edodes

    Get PDF
    The most saturated linkage map for Lentinula edodes to date was constructed based on a mono-. karyotic population of 146 single spore isolates (SSIs) using sequence-related amplified polymorphism (SRAP), target region amplification polymorphism (TRAP), insertion deletion (InDel) markers, and the mating-type loci. Five hundred and twenty-four markers were located on 13 linkage groups (LGs). The map spanned a total length of 1006.1 cM, with an average marker spacing of 2.0 cM. Quantitative trait loci (QTLs) mapping was utilized to uncover the loci regulating and controlling the vegetative mycelium growth rate on various synthetic media, and complex medium for commercial cultivation of L. edodes. Two and 13 putative QTLs, identified respectively in the monokaryotic population and two testcross dikaryotic populations, were mapped on seven different LGs. Several vegetative mycelium growth rate-related QTLs uncovered here were clustered on LG4 (Qmgr1, Qdgr1, Qdgr2 and Qdgr9) and LG6 (Qdgr3, Qdgr4 and Qdgr5), implying the presence of main genomic areas responsible for growth rate regulation and control. The QTL hotspot region on LG4 was found to be in close proximity to:the region containing the mating-type A (MAT-A) locus. Moreover, Qdgr2 on LG4 was detected on different media, contributing 8.07%-23.71% of the phenotypic variation. The present study provides essential information for QTL mapping and marker-assisted selection (MAS) in L. edodes. (C) 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.The most saturated linkage map for Lentinula edodes to date was constructed based on a mono-. karyotic population of 146 single spore isolates (SSIs) using sequence-related amplified polymorphism (SRAP), target region amplification polymorphism (TRAP), insertion deletion (InDel) markers, and the mating-type loci. Five hundred and twenty-four markers were located on 13 linkage groups (LGs). The map spanned a total length of 1006.1 cM, with an average marker spacing of 2.0 cM. Quantitative trait loci (QTLs) mapping was utilized to uncover the loci regulating and controlling the vegetative mycelium growth rate on various synthetic media, and complex medium for commercial cultivation of L. edodes. Two and 13 putative QTLs, identified respectively in the monokaryotic population and two testcross dikaryotic populations, were mapped on seven different LGs. Several vegetative mycelium growth rate-related QTLs uncovered here were clustered on LG4 (Qmgr1, Qdgr1, Qdgr2 and Qdgr9) and LG6 (Qdgr3, Qdgr4 and Qdgr5), implying the presence of main genomic areas responsible for growth rate regulation and control. The QTL hotspot region on LG4 was found to be in close proximity to:the region containing the mating-type A (MAT-A) locus. Moreover, Qdgr2 on LG4 was detected on different media, contributing 8.07%-23.71% of the phenotypic variation. The present study provides essential information for QTL mapping and marker-assisted selection (MAS) in L. edodes. (C) 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved

    Characterization of calcium deposition induced by Synechocystis sp PCC6803 in BG11 culture medium

    Get PDF
    Calcium carbonate (CaCO3) crystals in their preferred orientation were obtained in BG11 culture media inoculated with Synechocystis sp. PCC6803 (inoculated BG11). In this study, the features of calcium carbonate deposition were investigated. Inoculated BG11 in different calcium ion concentrations was used for the experimental group, while the BG11 culture medium was used for the control group. The surface morphologies of the calcium carbonate deposits in the experimental and control groups were determined by scanning and transmission electron microscopy. The deposits were analyzed by electronic probe micro-analysis, Fourier transform infrared spectrum, X-ray diffraction, thermal gravimetric analysis and differential scanning calorimetry. The results show that the surfaces of the crystals in the experimental group were hexahedral in a scaly pattern. The particle sizes were micrometer-sized and larger than those in the control group. The deposits of the control group contained calcium (Ca), carbon (C), oxygen (O), phosphorus (P), iron (Fe), copper (Cu), zinc (Zn), and other elements. The deposits in the experimental group contained Ca, C, and O only. The deposits of both groups contained calcite. The thermal decomposition temperature of the deposits in the control group was lower than those in the experimental group. It showed that the CaCO3 deposits of the experimental group had higher thermal stability than those of the control group. This may be due to the secondary metabolites produced by the algae cells, which affect the carbonate crystal structure and result in a close-packed structure. The algae cells that remained after thermal weight loss were heavier in higher calcium concentrations in BG11 culture media. There may be more calcium-containing crystals inside and outside of these cells. These results shall be beneficial for understanding the formation mechanism of carbonate minerals.Calcium carbonate (CaCO3) crystals in their preferred orientation were obtained in BG11 culture media inoculated with Synechocystis sp. PCC6803 (inoculated BG11). In this study, the features of calcium carbonate deposition were investigated. Inoculated BG11 in different calcium ion concentrations was used for the experimental group, while the BG11 culture medium was used for the control group. The surface morphologies of the calcium carbonate deposits in the experimental and control groups were determined by scanning and transmission electron microscopy. The deposits were analyzed by electronic probe micro-analysis, Fourier transform infrared spectrum, X-ray diffraction, thermal gravimetric analysis and differential scanning calorimetry. The results show that the surfaces of the crystals in the experimental group were hexahedral in a scaly pattern. The particle sizes were micrometer-sized and larger than those in the control group. The deposits of the control group contained calcium (Ca), carbon (C), oxygen (O), phosphorus (P), iron (Fe), copper (Cu), zinc (Zn), and other elements. The deposits in the experimental group contained Ca, C, and O only. The deposits of both groups contained calcite. The thermal decomposition temperature of the deposits in the control group was lower than those in the experimental group. It showed that the CaCO3 deposits of the experimental group had higher thermal stability than those of the control group. This may be due to the secondary metabolites produced by the algae cells, which affect the carbonate crystal structure and result in a close-packed structure. The algae cells that remained after thermal weight loss were heavier in higher calcium concentrations in BG11 culture media. There may be more calcium-containing crystals inside and outside of these cells. These results shall be beneficial for understanding the formation mechanism of carbonate minerals

    Frontier ocean thermal/power and solar PV systems for transformation towards net-zero communities

    No full text
    Ocean thermal and power energy systems are promising driving forces for seashore coastal communities to achieve net-zero energy/emission target, whereas energy planning and management on ocean thermal/power and distributed building integrated photovoltaic (BIPV) systems are critical, in terms of serving scale sizing and planning on geographical locations of district building community, and cycling aging of battery storages. However, the current literature provides insufficient studies on this topic. This study aims to address this research gap by transforming towards zero-energy coastal communities from the district level in subtropical regions, including centralised seawater-based chiller systems, distributed BIPVs and coastal oscillating water column technologies, as well as multi-directional Vehicle-to-Building energy interaction paradigms. Advanced energy management strategies were explored to enhance renewable penetration, import cost-saving, and deceleration of battery cycling aging, in response to relative renewable-to-demand difference, off-peak grid information with low price, and real-time battery cycling aging. Furthermore, in accordance with the power generation characteristic of two wave stations (i.e., Kau Yi Chau (KYC) and West Lamma Channel (WLC)) in Hong Kong, energy system planning and structural configurations of the coastal community were proposed and comparatively studied for the multi-criteria performance improvement. Research results showed that, compared to an air-cooled chiller, the water-cooled chiller with a much higher Coefficient of Performance (COP) will reduce the energy consumption of cooling systems, leading to a decrease in total electric demand from 134 to 126.5 kWh/m2·a. The scale for the net-zero energy district community with distributed BIPVs and oscillating water column was identified as 5 high-rise office buildings, 5 high-rise hotel buildings, 150 private cars and 120 public shuttle buses. Furthermore, the geographical location planning scheme on the Case 1 (office buildings close to KYC, and hotel buildings close to WLC) was identified as the most economically and environmentally feasible scheme, whereas the Case 3 (only office buildings are planned close to all power supply with oscillating water column) showed the highest flexibility in grid electricity shifting, together with the highest value of equivalent battery relative capacity. This study demonstrates techno-economic performances and energy flexibility of frontier ocean energy technologies in a coastal community under advanced energy management strategies, together with technical guidance for serving scale sizing and planning on geographical locations. The research results highlight the prospects and promote frontier ocean energy techniques in subtropical coastal regions.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care. Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Design & Construction Managemen

    DFT and experimental study of elemental mercury (Hg<sup>0</sup>) removal by 2D-g-C<sub>3</sub>N<sub>4</sub>

    No full text
    2D-g-C3N4 nanosheet was prepared and employed for the adsorption of elemental mercury (Hg0). The g-C3N4 was analyzed through X-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR) methods, and the results showed that the prepared sample was well-defined 2D-nanosheet. The 2D-g-C3N4 sorbent exhibited a high Hg0 removal efficiency (&gt; 90%) at the condition of temperature 120 °C. To investigate the mechanism of Hg0 adsorption on the 2D-g-C3N4 surface, corresponding theoretical exploration based on the first principle prediction and X-ray photoelectron spectroscopy (XPS) test was implemented. The DFT calculation results showed that Hg0 was strongly bound to the B1 site of the g-C3N4 surface with an adsorption energy change of -162.2 kJ mol−1, the equilibrium distance of Hg-C was 3.473 Å, and electron transfer between Hg and C atoms was 0.02. The results of XPS showed the main species of mercury was HgO on the surface of 2D-g-C3N4 sample and the interaction between C3N4 surface and Hg0 was physisorption. This study provides a demonstration of proof-of-concept demonstration that g-C3N4 is a promising sorbent capable of capturing Hg0, and presents in-depth understanding of Hg0 adsorption mechanism on 2D-g-C3N4 sorbent.Sanitary Engineerin

    Intuitionistic Fuzzy Laplacian Twin Support Vector Machine for Semi-supervised Classification

    No full text
    In general, data contain noises which come from faulty instruments, flawed measurements or faulty communication. Learning with data in the context of classification or regression is inevitably affected by noises in the data. In order to remove or greatly reduce the impact of noises, we introduce the ideas of fuzzy membership functions and the Laplacian twin support vector machine (Lap-TSVM). A formulation of the linear intuitionistic fuzzy Laplacian twin support vector machine (IFLap-TSVM) is presented. Moreover, we extend the linear IFLap-TSVM to the nonlinear case by kernel function. The proposed IFLap-TSVM resolves the negative impact of noises and outliers by using fuzzy membership functions and is a more accurate reasonable classifier by using the geometric distribution information of labeled data and unlabeled data based on manifold regularization. Experiments with constructed artificial datasets, several UCI benchmark datasets and MNIST dataset show that the IFLap-TSVM has better classification accuracy than other state-of-the-art twin support vector machine (TSVM), intuitionistic fuzzy twin support vector machine (IFTSVM) and Lap-TSVM.Mathematical PhysicsDelft Institute of Applied Mathematic

    Mechanical and shape memory properties of NiTi triply periodic minimal surface structures fabricated by laser powder bed fusion

    No full text
    Porous NiTi lattice structures are widely used in the manufacture of crucial components owing to their excellent shape memory effect, superelasticity, and high damping capacities. However, the specific strength and lightweight characteristics of porous NiTi lattice structures fabricated by conventional technologies are limited by unpredictability. In this work, three types of porous NiTi structures based on triply periodic minimal surface (TPMS) – Diamond, Gyroid, and Primitive – were designed and manufactured by the laser powder bed fusion (LPBF) additive manufacturing process. This work demonstrates LPBF is a feasible and efficient approach to fabricate highly accurate porous NiTi TPMS structures. Moreover, the influence of each of these structures on the mechanical and shape memory properties was investigated. Among the three structures, Gyroid had the smallest volume fraction deviation. Furthermore, the Diamond structure had the largest compressive modulus (782.82 MPa) and ultimate yield strength (163.14 MPa). The Gyroid and Primitive structures exhibit excellent elastic recovery deriving from high values of compressive modulus (662.44 MPa, and 703.29 MPa), and can maintain reliable structural robustness. The Primitive structure exhibited the lowest mechanical properties (37.80 MPa). During the cyclic compression test, Gyroid and Primitive show a smaller unrecovered strain than Diamond. Primitive shows the largest recovered strain during the heating process (6.98%). The higher mechanical flexibility of Primitive structure endows this structure with higher recovery ratio. During the direct compression test, the residual strain exhibits a positive correlation with the loading strain. All three structures exhibit good deformation recovery capability with a strain of 4%. At a strain of 12%, recovered strain during heating became the dominant factor in the recovery of the TPMS structure. Overall, porous NiTi TPMS structures are capable of reversible compressibility composed of rapid elastic recovery and controllable shape memory recovery. The unique performance of porous NiTi TPMS structure fabricated by LPBF renders it a highly efficiency energy-absorbing structure.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Biomechanical Engineerin

    Free multi-floor indoor space extraction from complex 3D building models

    No full text
    Intelligent navigation and facility management in complex indoor environments are issues at the forefront of geospatial information science. Indoor spaces with fine geometric and semantic descriptions provide a solid foundation for various indoor applications, but it is difficult to comprehensively extract free multi-floor indoor spaces from complex three-dimensional building models, such as those described using CityGML LoD4, with existing methods for the subdivision or extraction of indoor spaces based on vector topology processing. Therefore, this paper elaborates a new voxelbased approach for extracting free multi-floor indoor spaces from 3D building models. It transforms the complicated vector processing tasks into a simple raster process that consists of three steps: voxelization with semantic enhancement, voxel classification, and boundary extraction. Experiments illustrate that the proposed method can automatically and correctly extract free multi-floor indoor spaces, especially two typical kinds of open indoor spaces, namely, lobbies and staircases.Accepted Author ManuscriptUrban Data Scienc

    Insight into Eu redox and Pr<sup>3+</sup> 5d emission in KSrPO<sub>4</sub> by VRBE scheme construction

    No full text
    A series of Ln-doped KSrPO4 (Ln = Ce3+, Eu3+, Eu2+, Pr3+) phosphors are prepared through a high-temperature solid-state method. The KSrPO4 compound is confirmed to possess a β-K2SO4 structure with the Pnma group by Rietveld refinement, and the temperature-dependent lattice parameters are investigated with the powder X-ray diffraction results at different temperatures. Ce3+ and Eu3+ ions are introduced to probe the crystal field strength (CFS) and the lanthanide site symmetry by using VUV-UV-vis spectroscopy. The temperature-dependent luminescence properties of KSrPO4: Ce3+/Eu2+ exhibit an excellent thermal stability of Ce3+/Eu2+ luminescence. Based on the VUV-UV-vis spectra of Ce3+ and Eu3+ doped KSrPO4, the vacuum referred binding energy (VRBE) scheme is constructed to understand the redox properties of Eu, the 5d energy levels of Pr3+ and the thermal quenching characteristics of Ce3+ and Eu2+ luminescence.Accepted Author ManuscriptRST/Fundamental Aspects of Materials and Energ

    Indoor Multi-Dimensional Location GML and Its Application for Ubiquitous Indoor Location Services

    No full text
    The Open Geospatial Consortium (OGC) Geography Markup Language (GML) standard provides basic types and a framework for defining geo-informational data models such as CityGML and IndoorGML, which provide standard information models for 3D city modelling and lightweight indoor network navigation. Location information, which is the semantic engine that fuses big geo-information data, is however, discarded in these standards. The Chinese national standard of Indoor Multi-Dimensional Location GML (IndoorLocationGML) presented in this study can be used in ubiquitous indoor location intelligent applications for people and robots. IndoorLocationGML is intended as an indoor multi-dimensional location information model and exchange data format standard, mainly for indoor positioning and navigation. This paper introduces the standard’s main features: (1) terminology; (2) indoor location information model using a Unified Modeling Language (UML) class diagram; (3) indoor location information markup language based on GML; and (4) use cases. A typical application of the standard is then discussed. This standard is applicable to the expression, storage, and distribution of indoor multi-dimensional location information, and to the seamless integration of indoor–outdoor location information. The reference and basis are therefore relevant to publishers, managers, users, and developers of indoor navigation and location-based services (LBS)Urban Data Scienc

    Rural Post-Earthquake Resettlement Mode Choices: Empirical Case Studies of Sichuan, China

    No full text
    Earthquakes occur frequently in rural areas of Sichuan, China, causing huge damage and high mortality. The built environment plays a significant role in providing residents with safe and resilient settlements in such areas. There is yet little research on how rural families in developing countries cope with geological disasters like earthquakes, and how built environmental factors would influence their resettlement choices which would directly affect their quality of life afterward. Urban planning activities should be accompanied by these insights to design and create human-centric resettlements accordingly. In this study, the resettlement choices after three major earthquakes in Sichuan were studied for this reason. Random sampling and face-to-face questionnaire surveys were combined with factor analysis and binary logistic regression to understand the resettlement modes desired by the residents and the influencing factors. The results show that residents who have lived in their current places long and whose houses were not built recently are more likely to choose the in-situ resettlement. Accessibility to employment and public services has a significant impact on residents' choice of in-situ resettlement or reallocated resettlement, and so does the previous resettlement experience. The research results can provide useful suggestions for Chinese rural area post-earthquake resettlement planning following a human-centric approach with empirical data.Design & Construction Managemen
    • …
    corecore