391 research outputs found
Effect of reducing 3.2% dietary protein level on the growth performance and immunity of Nile tilapia (Oreochromis niloticus) with supplementation of multi amino acids
Reducing dietary protein content in fish feeds will reduce cost of production if growth performance can be maintained. In this study, we assessed the effects of reduced dietary protein content from 33.5% to 27.4% with ideal amino acids profile on the growth, immune parameters, intestinal microvilli length and total ammonia nitrogen discharge of tilapia. After 8 weeks of feeding, growth performance and feed efficiency were not affected by reducing dietary protein content from 33.5% to 30.3%, while fish fed 27.4% CP had the lowest weight gain. Total ammonia nitrogen discharged into the water 9 hours after the feeding was decreased by about 35%. Serum lysozyme activity, blood respiratory burst activity and serum ACH50 were not significantly affected by dietary protein content. Fold height, enterocyte height and microvillus height of proximal and middle intestine were significantly increased with reducing of dietary protein. Results indicated that 3.2% dietary protein content can be reduced, which had no effects on growth performance and immunity of Nile tilapia in practical diet
A comparison between water uptake and root length density in winter wheat: effects of root density and rhizosphere properties
© 2020, The Author(s). Background and aims: We aim to quantify the variation in root distribution in a set of 35 experimental wheat lines. We also compared the effect of variation in hydraulic properties of the rhizosphere on water uptake by roots. Methods: We measured the root length density and soil drying in 35 wheat lines in a field experiment. A 3D numerical model was used to predict soil drying profiles with the different root length distributions and compared with measured soil drying. The model was used to test different scenarios of the hydraulic properties of the rhizosphere. Results: We showed that wheat lines with no detectable differences in root length density can induce soil drying profiles with statistically significant differences. Our data confirmed that a root length density of at least 1cm/cm3 is needed to drain all the available water in soil. In surface layers where the root length density was far greater than 1cm/cm3 water uptake was independent of rooting density due to competition for water. However, in deeper layers where root length density was less than 1cm/cm3, water uptake by roots was proportional to root density. Conclusion: In a set of wheat lines with no detectable differences in the root length density we found significant differences in water uptake. This may be because small differences in root density at depth can result in larger differences in water uptake or that the hydraulic properties of the rhizosphere can greatly affect water uptake
Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes
A wide field of view Cherenkov/fluorescence telescope array is one of the
main components of the Large High Altitude Air Shower Observatory project. To
serve as Cherenkov and fluorescence detectors, a flexible and mobile design is
adopted for easy reconfiguring of the telescope array. Two prototype telescopes
have been constructed and successfully run at the site of the ARGO-YBJ
experiment in Tibet. The features and performance of the telescopes are
presented
Non-Markovian dynamics in a spin star system: The failure of thermalization
In most cases, a small system weakly interacting with a thermal bath will
finally reach the thermal state with the temperature of the bath. We show that
this intuitive picture is not always true by a spin star model where non-Markov
effect predominates in the whole dynamical process. The spin star system
consists a central spin homogeneously interacting with an ensemble of identical
noninteracting spins. We find that the correlation time of the bath is
infinite, which implies that the bath has a perfect memory, and that the
dynamical evolution of the central spin must be non- Markovian. A direct
consequence is that the final state of the central spin is not the thermal
state equilibrium with the bath, but a steady state which depends on its
initial state.Comment: 8 page
Tightly Coupled Array Antennas for Ultra-Wideband Wireless Systems
Tightly coupled array (TCA) antenna has become a hot topic of research recently, due to its
potential of enabling one single antenna array to operate over an extremely wide frequency range. Such an
array antenna is promising for applications in numerous wideband/multi-band and multi-function wireless
systems such as wideband high-resolution radars, 5G mobile communications, satellite communications,
global navigation satellite systems, sensors, wireless power transmission, internet of things and so on. Many
papers on this topic have been published by researchers internationally. This paper provides a detailed
review of the recent development on TCA that utilizes the capacitive coupling. The basic principles and the
historical evolution of the TCAs are introduced firstly. Then, recent development in the analysis and design
of TCAs, such as equivalent circuit analysis, bandwidth limitation analysis, array elements, feed structures,
substrates/superstrates loading, etc., are explained and discussed. The performances of the state-of-the-art
TCAs are presented and a comparison amongst some TCAs reported recently is summarized and discussed.
To illustrate the practical designs of TCA, one case study is provided, and the detailed design procedures of
the TCA are explained so as to demonstrate the TCA design methodology. Simulated results including the
VSWR at different angles of scanning, patterns and antenna gain are shown and discussed. A conclusion
and future work are given in the end
Noise-assisted preparation of entangled atoms
We discuss the generation of entangled states of two two-level atoms inside
an optical cavity. The cavity mode is supposed to be coupled to a white noise
with adjustable intensity. We describe how the entanglement between the atoms
inside the cavity arise in such a situation. The entanglement is maximized for
intermediate values of the noise intensity, while it is a monotonic function of
the spontaneous rate. This resembles the phenomenon of stochastic resonance and
sheds more light on the idea to exploit white noise in quantum information
processing.Comment: 4 pages, 4 figure
The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array
We have already reported the first result on the all-particle spectrum around
the knee region based on data from 2000 November to 2001 October observed by
the Tibet-III air-shower array. In this paper, we present an updated result
using data set collected in the period from 2000 November through 2004 October
in a wide range over 3 decades between eV and eV, in which
the position of the knee is clearly seen at around 4 PeV. The spectral index is
-2.68 0.02(stat.) below 1PeV, while it is -3.12 0.01(stat.) above 4
PeV in the case of QGSJET+HD model, and various systematic errors are under
study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
Moon Shadow by Cosmic Rays under the Influence of Geomagnetic Field and Search for Antiprotons at Multi-TeV Energies
We have observed the shadowing of galactic cosmic ray flux in the direction
of the moon, the so-called moon shadow, using the Tibet-III air shower array
operating at Yangbajing (4300 m a.s.l.) in Tibet since 1999. Almost all cosmic
rays are positively charged; for that reason, they are bent by the geomagnetic
field, thereby shifting the moon shadow westward. The cosmic rays will also
produce an additional shadow in the eastward direction of the moon if cosmic
rays contain negatively charged particles, such as antiprotons, with some
fraction. We selected 1.5 x10^{10} air shower events with energy beyond about 3
TeV from the dataset observed by the Tibet-III air shower array and detected
the moon shadow at level. The center of the moon was detected
in the direction away from the apparent center of the moon by 0.23 to
the west. Based on these data and a full Monte Carlo simulation, we searched
for the existence of the shadow produced by antiprotons at the multi-TeV energy
region. No evidence of the existence of antiprotons was found in this energy
region. We obtained the 90% confidence level upper limit of the flux ratio of
antiprotons to protons as 7% at multi-TeV energies.Comment: 13pages,4figures; Accepted for publication in Astroparticle Physic
Direct Measurements of the Branching Fractions for and and Determinations of the Form Factors and
The absolute branching fractions for the decays and
are determined using singly
tagged sample from the data collected around 3.773 GeV with the
BES-II detector at the BEPC. In the system recoiling against the singly tagged
meson, events for and events for decays are observed. Those yield
the absolute branching fractions to be and . The
vector form factors are determined to be
and . The ratio of the two form
factors is measured to be .Comment: 6 pages, 5 figure
- …