79 research outputs found

    The Operculum-Plug Area and Membranous Structure of the Eggs of Trichuris Trichiura

    Get PDF
    Eggs of Trichuris trichiura were prepared for scanning electron microscopy (SEM) by the dimethylsulfoxide freeze-cracking method. The egg-shell and oocyte were examined by SEM. The egg has a chitinous shell which consists of more than 10 layers of dense lamellae. The shell is bordered by a limiting membrane. An operculum and a collar made of chitinous shell together form the opercular area. The operculum is an empty cavity. The chitinous fibers of the egg-shell in this area are diffuse and loose, with numerous micropores or spaces. The egg-shell in this area therefore appears to form a fine tubular network. The oocyte is an undifferentiated cell with a biconcave drum-like shape. The perivitelline space is conspicuous at both ends of the cell

    Whole-genome sequencing of <em>Oryza brachyantha</em> reveals mechanisms underlying <em>Oryza</em> genome evolution

    Get PDF
    The wild species of the genus Oryza contain a largely untapped reservoir of agronomically important genes for rice improvement. Here we report the 261-Mb de novo assembled genome sequence of Oryza brachyantha. Low activity of long-terminal repeat retrotransposons and massive internal deletions of ancient long-terminal repeat elements lead to the compact genome of Oryza brachyantha. We model 32,038 protein-coding genes in the Oryza brachyantha genome, of which only 70% are located in collinear positions in comparison with the rice genome. Analysing breakpoints of non-collinear genes suggests that double-strand break repair through non-homologous end joining has an important role in gene movement and erosion of collinearity in the Oryza genomes. Transition of euchromatin to heterochromatin in the rice genome is accompanied by segmental and tandem duplications, further expanded by transposable element insertions. The high-quality reference genome sequence of Oryza brachyantha provides an important resource for functional and evolutionary studies in the genus Oryza

    Stemness Analysis Uncovers That The Peroxisome Proliferator-Activated Receptor Signaling Pathway Can Mediate Fatty Acid Homeostasis In Sorafenib-Resistant Hepatocellular Carcinoma Cells

    Get PDF
    Hepatocellular carcinoma (HCC) stem cells are regarded as an important part of individualized HCC treatment and sorafenib resistance. However, there is lacking systematic assessment of stem-like indices and associations with a response of sorafenib in HCC. Our study thus aimed to evaluate the status of tumor dedifferentiation for HCC and further identify the regulatory mechanisms under the condition of resistance to sorafenib. Datasets of HCC, including messenger RNAs (mRNAs) expression, somatic mutation, and clinical information were collected. The mRNA expression-based stemness index (mRNAsi), which can represent degrees of dedifferentiation of HCC samples, was calculated to predict drug response of sorafenib therapy and prognosis. Next, unsupervised cluster analysis was conducted to distinguish mRNAsi-based subgroups, and gene/geneset functional enrichment analysis was employed to identify key sorafenib resistance-related pathways. In addition, we analyzed and confirmed the regulation of key genes discovered in this study by combining other omics data. Finally, Luciferase reporter assays were performed to validate their regulation. Our study demonstrated that the stemness index obtained from transcriptomic is a promising biomarker to predict the response of sorafenib therapy and the prognosis in HCC. We revealed the peroxisome proliferator-activated receptor signaling pathway (the PPAR signaling pathway), related to fatty acid biosynthesis, that was a potential sorafenib resistance pathway that had not been reported before. By analyzing the core regulatory genes of the PPAR signaling pathway, we identified four candidate target genes, retinoid X receptor beta (RXRB), nuclear receptor subfamily 1 group H member 3 (NR1H3), cytochrome P450 family 8 subfamily B member 1 (CYP8B1) and stearoyl-CoA desaturase (SCD), as a signature to distinguish the response of sorafenib. We proposed and validated that the RXRB and NR1H3 could directly regulate NR1H3 and SCD, respectively. Our results suggest that the combined use of SCD inhibitors and sorafenib may be a promising therapeutic approach
    corecore