63 research outputs found

    Stability Analysis of ITER Side Correction Coils

    Get PDF
    AbstractThe stability of the Side Correction Coils (SCC) cable-in-conduit conductors (CICC) for the International Thermonuclear Experimental Reactor (ITER) has been analyzed by the formulas and the code Gandalf. This paper describes the 1-dimensional mathematical code Gandalf, uses the code to simulate the quench and the recovery status of ITER SCC CICC, discusses the dependence of the stability margin on various operating parameters including operating current, operating temperature and mass flow rate, and analyzes the differences between the simulated values and the calculated values. The ITER SCC's quenching is also simulated to investigate its temperature distribution and temperature margin. Dependence of temperature margin on magnetic fields and operating temperature has been researched. The studies of ITER SCC provide a basis for the stable operation and optimization design of SCC CICC

    Nano-scale corrosion mechanism of T91 steel in static lead-bismuth eutectic: a combined APT, EBSD, and STEM investigation

    Get PDF
    T91 steel is a candidate material for structural components in lead-bismuth-eutectic (LBE) cooled systems, for example fast reactors and solar power plants [1]. However, the corrosion mechanisms of T91 in LBE remain poorly understood. In this study, we have analysed the static corrosion of T91 in liquid LBE using a range of characterisation techniques at increasingly smaller scales. A unique pattern of liquid metal intrusion was observed that does not appear to correlate with the grain boundary network. Upon closer inspection, electron backscatter diffraction (EBSD) reveals a change in the morphology of grains at the LBE-exposed surface, suggesting a local phase transition. Energy dispersive X-ray (EDX) maps show that Cr is depleted in the T91 material near the LBE interface. Furthermore, we observed the dissolution of all Cr-enriched precipitates in this region. Although the corrosion is conducted in an oxygen deficient environment, both scanning transmission electron microscopy (STEM) and atom probe tomography (APT) reveal a thin surface oxide layer (presumably wüstite) at the LBE-steel interface. Using electron energy loss spectroscopy (EELS) in the STEM, as well as APT, the atomic scale elemental redistribution and 3D morphology of the corrosion interface is investigated. By combining results from these different techniques, several types of oxide phases and structures can be identified. Based on this detailed nano-scale information, we propose potential mechanisms of T91 corrosion in LBE

    WOMD-LiDAR: Raw Sensor Dataset Benchmark for Motion Forecasting

    Full text link
    Widely adopted motion forecasting datasets substitute the observed sensory inputs with higher-level abstractions such as 3D boxes and polylines. These sparse shapes are inferred through annotating the original scenes with perception systems' predictions. Such intermediate representations tie the quality of the motion forecasting models to the performance of computer vision models. Moreover, the human-designed explicit interfaces between perception and motion forecasting typically pass only a subset of the semantic information present in the original sensory input. To study the effect of these modular approaches, design new paradigms that mitigate these limitations, and accelerate the development of end-to-end motion forecasting models, we augment the Waymo Open Motion Dataset (WOMD) with large-scale, high-quality, diverse LiDAR data for the motion forecasting task. The new augmented dataset WOMD-LiDAR consists of over 100,000 scenes that each spans 20 seconds, consisting of well-synchronized and calibrated high quality LiDAR point clouds captured across a range of urban and suburban geographies (https://waymo.com/open/data/motion/). Compared to Waymo Open Dataset (WOD), WOMD-LiDAR dataset contains 100x more scenes. Furthermore, we integrate the LiDAR data into the motion forecasting model training and provide a strong baseline. Experiments show that the LiDAR data brings improvement in the motion forecasting task. We hope that WOMD-LiDAR will provide new opportunities for boosting end-to-end motion forecasting models.Comment: Dataset website: https://waymo.com/open/data/motion

    Metagenomic next-generation sequencing for detecting lower respiratory tract infections in sputum and bronchoalveolar lavage fluid samples from children

    Get PDF
    Lower respiratory tract infections are common in children. Bronchoalveolar lavage fluid has long been established as the best biological sample for detecting respiratory tract infections; however, it is not easily collected in children. Sputum may be used as an alternative yet its diagnostic accuracy remains controversial. Therefore, this study sought to evaluate the diagnostic accuracy of sputum for detecting lower respiratory tract infections using metagenomic next-generation sequencing. Paired sputum and bronchoalveolar lavage fluid samples were obtained from 68 patients; pathogens were detected in 67 sputum samples and 64 bronchoalveolar lavage fluid samples by metagenomic next-generation sequencing, respectively. The combined pathogen-detection rates in the sputum and bronchoalveolar lavage fluid samples were 80.90% and 66.2%, respectively. For sputum, the positive predictive values (PPVs) and negative predictive values (NPVs) for detecting bacteria were 0.72 and 0.73, respectively, with poor Kappa agreement (0.30; 95% confidence interval: 0.218–0.578, P < 0.001). However, viral detection in sputum had good sensitivity (0.87), fair specificity (0.57), and moderate Kappa agreement (0.46; 95% confidence interval: 0.231–0.693, P < 0.001). The PPVs and NPVs for viral detection in sputum were 0.82 and 0.67, respectively. The consistency between the sputum and bronchoalveolar lavage fluid was poor for bacterial detection yet moderate for viral detection. Thus, clinicians should be cautious when interpreting the results of sputum in suspected cases of lower respiratory tract infections, particularly with regards to bacterial detection in sputum. Viral detection in sputum appears to be more reliable; however, clinicians must still use comprehensive clinical judgment

    The Changes in Maternal Mortality in 1000 Counties in Mid-Western China by a Government-Initiated Intervention

    Get PDF
    BACKGROUND: Since 2000, the Chinese government has implemented an intervention program to reduce maternal mortality and eliminate neonatal tetanus in accordance with the Millennium Development Goals 5. To assess the effectiveness of this intervention program, we analyzed the level, trend and reasons defining the maternal mortality ratio (MMR) in the 1,000 priority counties before and after implementation of the intervention between 1999 and 2007. METHODOLOGY/PRINCIPAL FINDINGS: The data was obtained from the National Maternal and Child Health Routine Reporting System. The intervention included providing basic and emergency obstetric equipment and supplies to local medical hospitals, and also included providing professional training to local obstetric doctors, development of obstetric emergency centers and "green channel" express referral networks, reducing or waiving the cost of hospital delivery, and conducting community health education. Based on the initiation time of the intervention and the level of poverty, 1,000 counties, containing a total population of 300 million, were categorized into three groups. MMR significantly decreased by about 50%, with an average reduction rate of 9.24%, 16.06%, and 18.61% per year in the three county groups, respectively. The hospital delivery rate significantly increased. Obstetric hemorrhage was the leading cause of maternal deaths and significantly declined, with an average decrease in the MMR of 11.25%, 18.03%, and 24.90% per year, respectively. The magnitude of the MMR, the average reduction rate of the MMR, and the occurrence of the leading causes of death were closely associated with the percentage of poverty. CONCLUSIONS/SIGNIFICANCE: The intervention program implemented by the Chinese government has significantly reduced the MMR in mid-western China, suggesting that well-targeted interventions could be an efficient strategy to reducing MMR in resource-poor areas. Reduction of the MMR not only depends on conducting proven interventions, but also relies on economic development in rural areas with a high burden of maternal death

    Preventable maternal mortality: Geographic/rural-urban differences and associated factors from the population-based maternal mortality surveillance system in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most maternal deaths in developing countries can be prevented. China is among the 13 countries with the most maternal deaths; however, there has been a marked decrease in the maternal mortality ratio (MMR) over the last 3 decades. China's reduction in the MMR has contributed significantly to the global decline of the MMR. This study examined the geographic and rural-urban differences, time trends and related factors in preventable maternal deaths in China during 1996-2005, with the aim of providing reliable evidence for effective interventions.</p> <p>Methods</p> <p>Data were retrieved from the population-based maternal mortality surveillance system in China. Each death was reviewed by three committees to determine whether it was avoidable. The preventable maternal mortality ratio (PMMR), the ratios of PMMR (risk ratio, RR) and 95% confidence intervals (CI) were used to analyze regional disparities (coastal, inland and remote regions) and rural-urban variations. Time trends in the MMR, along with underlying causes and associated factors of death, were also analysed.</p> <p>Results</p> <p>Overall, 86.1% of maternal mortality was preventable. The RR of preventable maternal mortality adjusted by region was 2.79 (95% CI 2.42-3.21) and 2.38 (95% CI: 2.01-2.81) in rural areas compared to urban areas during the 1996-2000 and 2001-2005 periods, respectively. Meanwhile, the RR was the highest in remote areas, which was 4.80(95%CI: 4.10-5.61) and 4.74(95%CI: 3.86-5.83) times as much as that of coastal areas. Obstetric haemorrhage accounted for over 50% of preventable deaths during the 2001-2005 period. Insufficient information about pregnancy among women in remote areas and out-of-date knowledge and skills of health professionals and substandard obstetric services in coastal regions were the factors frequently associated with MMR.</p> <p>Conclusions</p> <p>Preventable maternal mortality and the distribution of its associated factors in China revealed obvious regional differences. The PMMR was higher in underdeveloped regions. In future interventions in remote and inland areas, more emphasis should be placed on improving women's ability to utilize healthcare services, enhancing the service capability of health institutions, and increasing the accessibility of obstetric services. These approaches will effectively lower PMMR in those regions and narrow the gap among the different regions.</p

    Influence of environmental conditions and proton irradiation on molten salt corrosion of metals

    No full text
    Practical applications of molten salts have emerged, especially in the power industry, such as molten salt reactors and concentrated solar power plants. However, the understanding of the molten salts, both physically and chemically, is still lacking. As one of the interactions between molten salts and materials, corrosion is critical to study for the successful deployment of these and other applications. This thesis contributes to our understanding of corrosion of metals in high temperature molten salts, especially fuorides. Corrosion of materials in molten salts starts with electrochemical corrosion reactions. However, the evolution of the interface is determined jointly by the corrosion reactions, interdifusion in solids, and surface difusion at the interface. These processes make possible the initiation and growth of tunnels flled with salt. It is recognized here that molten salt corrosion is highly penetrating corrosion in most cases, more penetrating than has ever been recognized. A categorization of molten salt corrosion based on morphology is provided, suggesting the necessity to understand each category and develop new quantifcation methods. As one mode of penetrating corrosion, intergranular penetrating corrosion in the molten salt is studied further in this thesis. The unique morphology and mechanism call for a new concept of intergranular corrosion as “1D wormhole corrosion”. Asymmetry of the elemental distribution across grain boundaries and the difusion-induced grain boundary migrations are observed. For applications involving simultaneous radiation, the infuence of radiation on corrosion is critical to understand. A dedicated experimental facility is constructed to study the synergy efect of radiation and corrosion using protons as the irradiation source. Various interaction modes are discovered, including the deceleration of intergranular penetrating corrosion and the acceleration of transgranular penetrating corrosion. Protons are also recognized to push the transition between intergranular and transgranular modes to favor the transgranular one while rendering the salt more corrosive. The complexity of the synergy calls for future studies to understand it, especially for application-relevant cases. The Discovery of this thesis provides a variety of directions for future studies to follow. It is important that we appreciate the complexity of molten salt corrosion and develop systematic approaches to study it.Ph.D

    Power Distribution Control Framework for Renewable Energy Architecture with Battery-Supercapacitor Based Hybrid Energy Storage Systems

    No full text
    Due to the intermittence and randomness of the renewable energy, hybrid energy storage system is widely adopted to suppress the power fluctuation. Power distribution is crucial for the robust and efficient operation of hybrid energy system. This paper proposes an innovative framework for hybrid energy storage system power distribution combining main circuit topology, modulation method and power distribution strategy. Firstly, hybrid modulation strategy to realize power distribution in a single-phase inverter is introduced. Then, power load prediction and low frequency filter are utilized to generate references for power distribution. Finally, the simulation model is established to test the framework and the result demonstrates the superiority of the proposed framework. The mean absolute percent error of the proposed SSA-LSTM mdoel is 0.0955 and the prediciton error by 40% compared with conventional LSTM model. Additionally, the energy management framework can adjust the port power distribution ratio flexibily to significantly suppress the power fluctuation of the grid and the operation cost of the hybrid energy storage system by reducing the charge and discharge cycle of the battery

    Power Distribution Control Framework for Renewable Energy Architecture with Battery-Supercapacitor Based Hybrid Energy Storage Systems

    No full text
    Due to the intermittence and randomness of the renewable energy, hybrid energy storage system is widely adopted to suppress the power fluctuation. Power distribution is crucial for the robust and efficient operation of hybrid energy system. This paper proposes an innovative framework for hybrid energy storage system power distribution combining main circuit topology, modulation method and power distribution strategy. Firstly, hybrid modulation strategy to realize power distribution in a single-phase inverter is introduced. Then, power load prediction and low frequency filter are utilized to generate references for power distribution. Finally, the simulation model is established to test the framework and the result demonstrates the superiority of the proposed framework. The mean absolute percent error of the proposed SSA-LSTM mdoel is 0.0955 and the prediciton error by 40% compared with conventional LSTM model. Additionally, the energy management framework can adjust the port power distribution ratio flexibily to significantly suppress the power fluctuation of the grid and the operation cost of the hybrid energy storage system by reducing the charge and discharge cycle of the battery
    corecore